Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 13552, 2023 08 20.
Article in English | MEDLINE | ID: mdl-37599336

ABSTRACT

Social reforestation programs plant trees on degraded, uncultivated land in low-income regions to allow the local population to generate income from selling wood products and-in case of agroforestry systems-to grow food. For fundraising it is of interest to demonstrate not only positive social impacts but also environmental ones. Proving negative greenhouse gas (GHG) emissions would allow the programs to enter the market for carbon offsetting projects and liberate further funding. In a case study, a social reforestation program in Kalimantan, Indonesia, is analyzed. GHG emissions (according to ISO 14067, PAS 2050 and EU ILCD Handbook for LCA) of the main product, laminated veneer lumber plywood, are determined as 622 and 21 kg CO2-e/m3 for short-term and long-term (above 100 years) plywood use, respectively. Switching to lignin-based resins and renewable electricity could reduce emissions down to - 363 kg CO2-e/m3 for long-term use. The analyzed agroforestry system produces almost carbon-neutral plywood today and could be climate positive in the mid-term.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Indonesia , Carbon , Climate , Electricity
2.
Adv Biochem Eng Biotechnol ; 173: 143-203, 2020.
Article in English | MEDLINE | ID: mdl-32227251

ABSTRACT

The development and implementation of industrial biotechnology (IB) is associated with high expectations for reductions of environmental impacts and risks, particularly in terms of climate change and fossil resource depletion, positive socioeconomic effects, hopes for new competitive products and processes, and development in rural areas. However, not all products and processes are really advantageous with regard to sustainability criteria, and not all are economically successful and accepted by stakeholders. Sustainability and life cycle assessment can play an important role to assess IB products and processes, often accompanying development processes from the early stages onwards. Such assessments can identify key factors regarding sustainability criteria, enable a determination of both product and process performance, or aid in prospectively estimating such performance and its consequences. Thus, development processes, investment decisions, policymaking, and the communication with stakeholders can be supported. This contribution reviews the field of sustainability and life cycle assessment in IB. We explore relevant literature from a methodical and application perspective and categorise suitable methodologies, methods, and tools. We characterise IB from an assessment perspective and indicate challenges, discuss approaches to address these, and identify possible fields of future research. Thus, students, researchers, and practitioners in the field of IB will obtain an up-to-date overview, references to relevant fields of literature, and guidance for own studies in this important and fast-emerging topic.


Subject(s)
Biotechnology , Environment , Industry , Forecasting , Green Chemistry Technology , Humans
3.
Article in English | MEDLINE | ID: mdl-32232765

ABSTRACT

Industrial biotechnology (IB) uses biological and biochemical processes in industrial production and is often regarded as an emerging key technology revolutionizing the production of many products while protecting resources and the environment and fostering economic development. This contribution describes the background and sketches the content of the volume 'Sustainability and Life Cycle Assessment of Industrial Biotechnology' in the Springer series 'Advances in Biochemical Engineering/Biotechnology'. The field of IB is introduced from different perspectives (milestones in IB history, economics of biotechnology industry, environmental and social as well as ethical issues and impacts, green chemistry) and in several applications fields (production of chemicals, geobiotechnology in mining).


Subject(s)
Biotechnology , Industry , Sustainable Development
4.
Article in English | MEDLINE | ID: mdl-32019249

ABSTRACT

The rising probability of extremely high temperatures and an increasing number of consecutive hot days caused by climate change-combined with the impact of these high temperatures on human health-is widely discussed in the literature. There are calls for the development of heatwave adaptation measures by governmental and scientific institutions. In this research, the predictors of health-related heat risk perception of urban citizens in Augsburg, Germany, were investigated. An online survey was conducted with 468 citizens, asking about their heat risk perception, knowledge about heat risks, and demographic data and health information. Statistical methods (Spearman correlation, unpaired t-test, ANOVA and multiple regression) were used to determine which factors were significant and relevant. The results show that the knowledge of heat risks, heat risk sensitivity and an external locus of control are the most important factors for heat risk perception. The health implication score and chronic disease show significant effects in descriptive statistics. Furthermore, younger people showed the highest heat risk perception of all age groups. Surprisingly, income, education, living alone and gender did not play a role in heat risk perception. The findings imply a need for better and intensified heat risk communication in urban areas-especially among elderly people-and thus are important for creating acceptance towards heat wave risks, which is a prerequisite of willingness to adapt.


Subject(s)
Health Knowledge, Attitudes, Practice , Hot Temperature , Risk Assessment , Adolescent , Adult , Aged , Cities , Climate Change , Female , Germany , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...