Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Res Notes ; 15(1): 196, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-35659286

ABSTRACT

OBJECTIVES: The widespread dissemination of phenotypic colistin-resistant (COR) bacteria in the community threatens public health. The horizontal gene transfer of the mobile colistin resistance gene via plasmids is thought to be one of the main mechanisms for dissemination. However, genotypic evidence to prove this in community settings is limited. This study used genome analysis to demonstrate the direct horizontal colistin resistance gene transfer via plasmids in isolates from the community. RESULTS: A total of 19 isolates of COR Escherichia coli from stool specimens of 23 residents from seven households in the Vietnamese community were assessed in this study. The whole-genome sequence data of isolates were acquired using a combination of DNBSEQ short-reads and Nanopore long-read sequencing. Analysis of genomic data was performed using online tools such as Geneious. Analysis of the genomic information of COR E. coli isolates revealed that the isolates from two residents of different households had a similar IncP1 plasmid possessing mcr-1.1, marked with a single nucleotide mutation at the same position. The study provided direct evidence to prove that mcr was horizontally transmitted among bacteria in community residents.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Anti-Bacterial Agents/pharmacology , Colistin , Drug Resistance, Bacterial/genetics , Escherichia coli , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Humans , Microbial Sensitivity Tests , Mutation , Nucleotides , Plasmids/genetics
2.
J Glob Antimicrob Resist ; 30: 152-154, 2022 09.
Article in English | MEDLINE | ID: mdl-35705132

ABSTRACT

OBJECTIVES: The extensive spread of colistin resistance represents an enormous concern to infectious disease treatment, because colistin is one of the few effective antibiotics against multidrug-resistant bacterial infections, including carbapenem-resistant bacteria. This dissemination can be caused by plasmid transfer containing the colistin resistance gene mcr. Therefore, the plasmid host range affects horizontal gene transfer. This study reports a fusion plasmid of different incompatibility types, which could easily expand the plasmid host range, allowing widespread mcr prevalence in the microbial community. METHODS: Genome sequences of colistin-resistant Escherichia coli isolates from stool specimens of healthy human residents in Ecuador were determined using the DNBSEQ and MinION platforms. Hybrid genome assembly was performed using Unicycler, and the genomes were annotated using DFAST. Genome analysis was performed using the Geneious Prime software. RESULTS: Two colistin-resistant E. coli strains isolated separately from different residents presented mcr-carrying plasmids with fused different incompatibility types, IncFIA, IncHIIA, and IncHIIB. The phylogenies of these host bacteria were different. The sizes of the mcr-carrying fusion plasmids pLR-06 and pLR-50 with the full Tn6330 mcr-transposon were 260 Kbp and 198 Kbp, respectively. Both fusion plasmids possessed other resistance genes, including tet(B), tet(M), blaTEM-1b, sul3, cmlA1, aadA1, aadA2, fosA3, and dfrA12. CONCLUSION: This is the first report of a fusion plasmid comprising different incompatibility types with mcr from colistin-resistant E. coli strains isolated from community residents. The mcr fusion plasmid may play a crucial role in achieving horizontal mcr transmission and the evolution of the multidrug resistance plasmid among hosts.


Subject(s)
Escherichia coli Infections , Escherichia coli Proteins , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli , Escherichia coli Infections/microbiology , Escherichia coli Proteins/genetics , Humans , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...