Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Plants ; 3: 17039, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28346447

ABSTRACT

For genetically homogeneous crops, the timing of flowering is determined largely by the cultivation environment and is strongly associated with the yield and quality of the harvest1. Flowering time and other agronomical traits are often tightly correlated, which can lead to difficulty excluding the effects of flowering time when evaluating the characteristics of different genetic varieties2. Here, we describe the development of transgenic rice plants whose flowering time can be controlled by specific agrochemicals. We first developed non-flowering rice plants by overexpressing a floral repressor gene, Grain number, plant height and heading date 7 (Ghd7)3,4, to inhibit any environmentally induced spontaneous flowering. We then co-transformed plants with a rice florigen gene, Heading date 3a (Hd3a)5, which is induced by the application of specific agrochemicals. This permitted the flowering time to be experimentally controlled regardless of the cultivation environment: some transgenic plants flowered only after agrochemical treatment. Furthermore, plant size and yield-related traits could, in some cases, be increased owing to both a longer duration of vegetative growth and an increased panicle size. This ability to control flowering time experimentally, independently of environmental variables, may lead to production of crops suitable for growth in different climates and facilitate breeding for various agronomical traits.


Subject(s)
Flowers/physiology , Oryza/physiology , Phenotype , Flowers/genetics , Oryza/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology
2.
Plant Cell Physiol ; 52(6): 1083-94, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21565907

ABSTRACT

Although flowering time is often associated with plant size, little is known about how flowering time genes affect plant architecture. We grew four rice lines having different flowering time genotypes (hd1 ehd1, hd1 Ehd1, Hd1 ehd1 and Hd1 Ehd1) under distinct photoperiod conditions. By using genotype-treatment combinations that resulted in similar flowering times, we were able to compare the effects of flowering time genes on traits related to plant architecture. The results revealed that the combination of Heading-date 1 (Hd1) and Early heading date 1 (Ehd1) can reduce the number of primary branches in a panicle, resulting in smaller spikelet numbers per panicle; this occurs independently of the control of flowering time. In addition, expression of the Hd3a and Rice Flowering-locus T 1 (RFT1) florigen genes was up-regulated in leaves of the Hd1 Ehd1 line at the time of the floral transition. We further revealed that Hd1 and/or Ehd1 caused up-regulation of Terminal Flower 1-like genes and precocious expression of panicle formation-related genes at shoot apical meristems during panicle development. Therefore, two key flowering time genes, Hd1 and Ehd1, can control panicle development in rice; this may affect crop yields in the field through florigen expression in leaf.


Subject(s)
Flowers/growth & development , Genes, Plant , Oryza/genetics , Plant Proteins/metabolism , Alleles , Flowers/physiology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genotype , Oryza/growth & development , Oryza/metabolism , Oryza/physiology , Phenotype , Photoperiod , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Stems/growth & development , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Seeds/growth & development , Up-Regulation
3.
Plant Mol Biol ; 65(4): 357-71, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17929174

ABSTRACT

The latest report has estimated the number of rice genes to be approximately 32,000. To elucidate the functions of a large population of rice genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the Full-length cDNA Over-eXpresser (FOX) gene-hunting system. This system is very useful for analyzing various gain-of-function phenotypes from large populations of transgenic plants overexpressing cDNAs of interest and others with unknown or important functions. We collected the plasmid DNAs of 13,980 independent full-length cDNA (FL-cDNA) clones to produce a FOX library by placing individual cDNAs under the control of the maize Ubiquitin-1 promoter. The FOX library was transformed into rice by Agrobacterium-mediated high-speed transformation. So far, we have generated approximately 12,000 FOX-rice lines. Genomic PCR analysis indicated that the average number of FL-cDNAs introduced into individual lines was 1.04. Sequencing analysis of the PCR fragments carrying FL-cDNAs from 8615 FOX-rice lines identified FL-cDNAs in 8225 lines, and a database search classified the cDNAs into 5462 independent ones. Approximately 16.6% of FOX-rice lines examined showed altered growth or morphological characteristics. Three super-dwarf mutants overexpressed a novel gibberellin 2-oxidase gene,confirming the importance of this system. We also show here the other morphological alterations caused by individual FL-cDNA expression. These dominant phenotypes should be valuable indicators for gene discovery and functional analysis.


Subject(s)
Gene Expression Profiling/methods , Genome, Plant , Oryza/genetics , Base Sequence , DNA Primers , DNA, Complementary , Reverse Transcriptase Polymerase Chain Reaction , Rhizobium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...