Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Article in English | MEDLINE | ID: mdl-34780012

ABSTRACT

To evaluate the accuracy of coronary artery calcium (CAC) scoring at various tube voltages and different monoenergetic image reconstructions on a first-generation dual-source photon-counting detector CT (PCD-CT). A commercially available anthropomorphic chest phantom with calcium inserts was scanned at different tube voltages (90 kV, Sn100kV, 120 kV, and Sn140kV) on a first-generation dual-source PCD-CT system with quantum technology using automatic exposure control with an image quality (IQ) level of 20. The same phantom was also scanned on a conventional energy-integrating detector CT (120 kV; weighted filtered back projection) for reference. Extension rings were used to emulate different patient sizes. Virtual monoenergetic images at 65 keV and 70 keV applying different levels of quantum iterative reconstruction (QIR) were reconstructed from the PCD-CT data sets. CAC scores were determined and compared to the reference. Radiation doses were noted. At an IQ level of 20, radiation doses ranged between 1.18 mGy and 4.64 mGy, depending on the tube voltage and phantom size. Imaging at 90 kV or Sn100kV was associated with a size-dependent radiation dose reduction between 23% and 48% compared to 120 kV. Tube voltage adapted image reconstructions with 65 keV and QIR 3 at 90 kV and with 70 keV and QIR 1 at Sn100kV allowed to calculate CAC scores comparable to conventional EID-CT scans with a percentage deviation of ≤ 5% for all phantom sizes. Our phantom study indicates that CAC scoring with dual-source PCD-CT is accurate at various tube voltages, offering the possibility of substantial radiation dose reduction.

2.
Eur Radiol ; 28(10): 4111-4121, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29713770

ABSTRACT

OBJECTIVES: We aimed to assess the diagnostic performance of a combined protocol with coronary computed tomography angiography (CCTA) and stress CT perfusion imaging (CTP) in heart transplant patients for comprehensive morphological and functional imaging. METHODS: In this prospective study, 13 patients undergoing routine follow-up 8±6 years after heart transplantation underwent CCTA and dynamic adenosine stress CTP using a third-generation dual-source CT scanner, cardiac magnetic resonance (MR) adenosine stress perfusion imaging at 1.5 T, and catheter coronary angiography. In CCTA stenoses >50% luminal diameter narrowing were noted. Myocardial perfusion deficits were documented in CTP and MR. Quantitative myocardial blood flow (MBF) was calculated with CTP. Left ventricular ejection fraction was determined on cardiac MR cine images. Radiation doses of CT were determined. RESULTS: One of the 13 patients had to be excluded because of severe motion artifacts. CCTA identified three patients with stenosis >50%, which were confirmed with catheter coronary angiography. CTP showed four patients with stress-induced myocardial hypoperfusion, which were confirmed by MR stress perfusion imaging. Quantitative analysis of global MBF showed lower mean values as compared to known reference values (MBF under stress 125.5 ± 34.5 ml/100 ml/min). Average left ventricular ejection fraction was preserved (56 ± 5%). CONCLUSIONS: In heart transplant patients, a comprehensive CT protocol for the assessment of morphology and function including CCTA and CTP showed good concordance to results from MR perfusion imaging and catheter coronary angiography. KEY POINTS: • Stress CT perfusion imaging enables the detection of myocardial ischemia • CT myocardial perfusion imaging can be combined with coronary computed tomography angiography • Combining perfusion and coronary CT imaging is accurate in heart transplant patients • CT myocardial perfusion imaging can be performed at a reasonable radiation dose.


Subject(s)
Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Heart Transplantation , Myocardial Perfusion Imaging/methods , Adult , Aged , Coronary Stenosis/physiopathology , Female , Heart/physiopathology , Humans , Male , Middle Aged , Myocardial Ischemia/diagnostic imaging , Prospective Studies , Sensitivity and Specificity , Tomography, X-Ray Computed/methods
3.
Acad Radiol ; 23(11): 1335-1341, 2016 11.
Article in English | MEDLINE | ID: mdl-27639625

ABSTRACT

RATIONALE AND OBJECTIVES: To prospectively compare high-pitch computed tomography (HPCT) under free breathing (FB) with standard-pitch CT (SPCT) under breath-hold (BH) for detection of pulmonary embolism (PE). MATERIALS AND METHODS: One hundred consecutive patients (47 females; mean age 58.7 ± 16.6) randomly underwent HPCT-FB (n = 50) or SPCT-BH (n = 50). Radiation doses were documented. One reader measured pulmonary artery attenuation and noise; mean signal-to-noise ratio (SNR) was calculated. Two readers assessed image quality, diagnostic confidence for detection of PE, motion artifacts, assessability of anatomical structures, and presence of transient interruption of contrast as sign of Valsalva maneuver. Inter-reader agreement was calculated. RESULTS: Radiation dose was significantly lower in HPCT compared to SPCT (2.68 ± 0.60 mGy vs 6.01 ± 2.26 mGy; P < .001). Mean pulmonary artery attenuation and image noise were significantly higher in HPCT (attenuation: 479 Hounsfield unit (HU) vs 343HU; P < .001; noise: 16 HU vs 10 HU; P < .001) whereas SNR was similar between groups (34 HU vs 38 HU; P = .258). HPCT had significantly higher diagnostic confidence for PE detection (P = .048), less cardiac and breathing artifacts (P < .001), better assessability of anatomical structures, and fewer cases of transient interruption of contrast (P < .001) compared to the SPCT. CONCLUSIONS: HPCT-FB allows for a significant reduction of breathing and motion artifacts compared to SPCT-BH. Diagnostic confidence, assessability of vascular and bronchial structures, as well as SNR are maintained.


Subject(s)
Multidetector Computed Tomography/methods , Pulmonary Embolism/diagnostic imaging , Artifacts , Breath Holding , Female , Humans , Male , Middle Aged , Prospective Studies , Pulmonary Artery/diagnostic imaging , Radiation Dosage , Respiration , Signal-To-Noise Ratio
4.
Clin Radiol ; 71(9): 905-11, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27234434

ABSTRACT

AIM: To demonstrate the feasibility and accuracy of automatic radiation dose monitoring software for computed tomography (CT) of trauma patients in a clinical setting over time, and to evaluate the potential of radiation dose reduction using iterative reconstruction (IR). MATERIALS AND METHODS: In a time period of 18 months, data from 378 consecutive thoraco-abdominal CT examinations of trauma patients were extracted using automatic radiation dose monitoring software, and patients were split into three cohorts: cohort 1, 64-section CT with filtered back projection, 200 mAs tube current-time product; cohort 2, 128-section CT with IR and identical imaging protocol; cohort 3, 128-section CT with IR, 150 mAs tube current-time product. Radiation dose parameters from the software were compared with the individual patient protocols. Image noise was measured and image quality was semi-quantitatively determined. RESULTS: Automatic extraction of radiation dose metrics was feasible and accurate in all (100%) patients. All CT examinations were of diagnostic quality. There were no differences between cohorts 1 and 2 regarding volume CT dose index (CTDIvol; p=0.62), dose-length product (DLP), and effective dose (ED, both p=0.95), while noise was significantly lower (chest and abdomen, both -38%, p<0.017). Compared to cohort 1, CTDIvol, DLP, and ED in cohort 3 were significantly lower (all -25%, p<0.017), similar to the noise in the chest (-32%) and abdomen (-27%, both p<0.017). Compared to cohort 2, CTDIvol (-28%), DLP, and ED (both -26%) in cohort 3 was significantly lower (all, p<0.017), while noise in the chest (+9%) and abdomen (+18%) was significantly higher (all, p<0.017). CONCLUSION: Automatic radiation dose monitoring software is feasible and accurate, and can be implemented in a clinical setting for evaluating the effects of lowering radiation doses of CT protocols over time.


Subject(s)
Radiation Exposure/analysis , Radiation Protection/methods , Radiometry/methods , Software , Tomography, X-Ray Computed/methods , Wounds and Injuries/diagnostic imaging , Adolescent , Adult , Aged , Aged, 80 and over , Feasibility Studies , Female , Humans , Male , Middle Aged , Patient Safety , Radiation Dosage , Radiation Exposure/prevention & control , Reproducibility of Results , Sensitivity and Specificity , User-Computer Interface , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...