Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(22): 10207-10220, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38767574

ABSTRACT

We prepared polyoxomolybdates with methylammonium countercations from methylammonium monomolybdate, (CH3NH3)2[MoO4], through two dehydrative condensation methods, acidifying in the aqueous solution and solid-state heating. Discrete (CH3NH3)10[Mo36O112(OH)2(H2O)14], polymeric ((CH3NH3)8[Mo36O112(H2O)14])n, and polymeric ((CH3NH3)4[γ-Mo8O26])n were selectively isolated via pH control of the aqueous (CH3NH3)2[MoO4] solution. The H2SO4-acidified solution of pH < 1 produced "sulfonated α-MoO3", polymeric ((CH3NH3)2[(MoO3)3(SO4)])n. The solid-state heating of (CH3NH3)2[MoO4] in air released methylamine and water to produce several methylammonium polyoxomolybdates in the sequence of discrete (CH3NH3)8[Mo7O24-MoO4], discrete (CH3NH3)6[Mo7O24], discrete (CH3NH3)8[Mo10O34], and polymeric ((CH3NH3)4[γ-Mo8O26])n, before their transformation into molybdenum oxides such as hexagonal-MoO3 and α-MoO3. Notably, some of their polyoxomolybdate structures were different from polyoxomolybdates produced from ammonium molybdates, such as (NH4)2[MoO4] or (NH4)6[Mo7O24], indicating that countercation affected the polyoxomolybdate structure. Moreover, among the tested polyoxomolybdates, (CH3NH3)6[Mo7O24] was the best negative staining reagent for the observation of the SARS-CoV-2 virus using transmission electron microscopy.

2.
J Ethnopharmacol ; 319(Pt 3): 117341, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37879507

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The terrestrial stems of Ephedra (Ephedra spp.; including Ephedra sinica Stapf and Ephedra przewalskii Stapf) extracts are used in traditional medicines in East Asia. In Japan, the Kampo formula containing E. sinica extract is prescribed for the treatment of the common cold, influenza virus infections, and mild symptoms of coronavirus disease 2019 (COVID-19). Although ephedrine alkaloids in E. sinica exert antitussive effects, they may have side effects associated with the sympathetic nervous system. E. przewalskii extract, a drug used in traditional Uyghur and Mongolian medicine, is considered to be free of ephedrine alkaloids and is a promising candidate for the treatment of infectious diseases. However, its use is currently limited because evidence of its antiviral efficacy remains inconclusive. AIM OF THE STUDY: We compared the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) effects of E. przewalskii and E. sinica extracts in vitro. Additionally, we examined the differences in their antiviral effects against different SARS-CoV-2 strains. MATERIALS AND METHODS: VeroE6/TMPRSS2 cells were infected with SARS-CoV-2 (Conventional, Delta, and Omicron strains-BA.1, BA.2, BA.4, and BA.5), and lysates prepared from each herbal extract were added. The infectious titer was determined using the 50% tissue culture infectious dose (TCID50) method; in turn, the half-maximal inhibitory concentration (IC50) was calculated for each extract to compare the antiviral efficacy of E. sinica and E. przewalskii extracts. Further, the extracts were compared with remdesivir for their antiviral efficacy against the conventional viral strain. To verify the effect of the inactivation of virus particles, these extracts were added to each SARS-CoV-2 strain, and the infectious titers were determined using the TCID50 method. RESULTS: The antiviral efficacy (i.e., IC50) of the E. przewalskii extract against each SARS-CoV-2 strain was 2.7-10.8-fold greater than that of the E. sinica extract. The antiviral efficacy of the E. przewalskii extract against conventional viral strains was compared with that of remdesivir, which was 1/27.6 of remdesivir's efficacy. The E. sinica extract showed minimal inactivation of virus particles of each strain, whereas the E. przewalskii extract resulted in substantial viral inactivation. CONCLUSIONS: The E. przewalskii extract showed higher antiviral activity against SARS-CoV-2 than the E. sinica extract. Overall, our study suggests that E. przewalskii extract can be used for the treatment of viral infections, including COVID-19.


Subject(s)
Alkaloids , COVID-19 , Ephedra sinica , Ephedra , SARS-CoV-2 , Ephedrine , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
3.
PLoS One ; 18(7): e0288634, 2023.
Article in English | MEDLINE | ID: mdl-37450488

ABSTRACT

Chlorous acid water (HClO2) is known for its antimicrobial activity. In this study, we attempted to accurately assess the ability of chlorous acid water to inactivate SARS-CoV-2. When using cell culture supernatants of infected cells as the test virus, the 99% inactivation concentration (IC99) for the SARS-CoV-2 D614G variant, as well as the Delta and Omicron variants, was approximately 10ppm of free chlorine concentration with a reaction time of 10 minutes. On the other hand, in experiments using a more purified virus, the IC99 of chlorous acid water was 0.41-0.74ppm with a reaction time of 1 minute, showing a strong inactivation capacity over 200 times. With sodium hypochlorite water, the IC99 was 0.54ppm, confirming that these chlorine compounds have a potent inactivation effect against SARS-CoV-2. However, it became clear that when using cell culture supernatants of infected cells as the test virus, the effect is masked by impurities such as amino acids contained therein. Also, when proteins (0.5% polypeptone, or 0.3% BSA + 0.3% sheep red blood cells, or 5% FBS) were added to the purified virus, the IC99 values became high, ranging from 5.3 to 76ppm with a reaction time of 10 minutes, significantly reducing the effect. However, considering that the usual usage concentration is 200ppm, it was shown that chlorous acid water can still exert sufficient disinfection effects even in the presence of proteins. Further research is needed to confirm the practical applications and effects of chlorous acid water, but it has the potential to be an important tool for preventing the spread of SARS-CoV-2.


Subject(s)
COVID-19 , Disinfectants , Viruses , Animals , Humans , Sheep , Disinfectants/pharmacology , SARS-CoV-2 , Chlorine/pharmacology , Water
4.
Microbiol Immunol ; 67(7): 334-344, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37248051

ABSTRACT

We first investigated the interactions between several algae-derived lectins and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). We created lectin columns using high-mannose (HM)-type glycan-specific lectins OAA and KAA-1 or core fucose-specific lectin hypninA-2 and conducted binding experiments with SARS-CoV-2. The results showed that these lectins were capable of binding to the virus. Furthermore, when examining the neutralization ability of nine different lectins, it was found that KAA-1, ESA-2, and hypninA-2 were effective in neutralizing SARS-CoV-2. In competitive inhibition experiments with glycoproteins, neutralization was confirmed to occur through HM-type or core fucose-type glycans. However, neutralization was not observed with other lectins, such as OAA. This trend of KAA-1 and ESA-2 having the neutralizing ability and OAA not having it was also similar to influenza viruses. Electron microscopy observations revealed that KAA-1 and hypninA-2 strongly aggregated SARS-CoV-2 particles, while OAA showed a low degree of aggregation. It is believed that the neutralization of SARS-CoV-2 involves multiple factors, such as glycan attachment sites on the S protein, the size of lectins, and their propensity to aggregate, which cause inhibition of receptor binding or aggregation of virus particles. This study demonstrated that several algae-derived lectins could neutralize SARS-CoV-2 and that lectin columns can effectively recover and concentrate the virus.


Subject(s)
COVID-19 , Orthomyxoviridae , Humans , SARS-CoV-2/metabolism , Mannose/metabolism , Fucose , Lectins/pharmacology , Mannose-Binding Lectins/metabolism , Mannose-Binding Lectins/pharmacology , Polysaccharides/metabolism
5.
Commun Biol ; 6(1): 395, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37041231

ABSTRACT

The decrease of antibody efficacy to mutated SARS-CoV-2 spike RBD explains the breakthrough infections and reinfections by Omicron variants. Here, we analyzed broadly neutralizing antibodies isolated from long-term hospitalized convalescent patients of early SARS-CoV-2 strains. One of the antibodies named NCV2SG48 is highly potent to broad SARS-CoV-2 variants including Omicron BA.1, BA.2, and BA.4/5. To reveal the mode of action, we determined the sequence and crystal structure of the Fab fragment of NCV2SG48 in a complex with spike RBD from the original, Delta, and Omicron BA.1. NCV2SG48 is from a minor VH but the multiple somatic hypermutations contribute to a markedly extended binding interface and hydrogen bonds to interact with conserved residues at the core receptor-binding motif of RBD, which efficiently neutralizes a broad spectrum of variants. Thus, eliciting the RBD-specific B cells to the longitudinal germinal center reaction confers potent immunity to broad SARS-CoV-2 variants emerging one after another.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies , Immunoglobulin Fab Fragments
6.
Int Immunol ; 35(4): 197-207, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36413150

ABSTRACT

The immune evasion of SARS-CoV-2 Omicron variants caused by multiple amino acid replacements in the receptor-binding domain (RBD) of the spike protein wanes the effectiveness of antibodies elicited by current SARS-CoV-2 booster vaccination. The vaccines that target Omicron strains have been recently developed, however, there has been a concern yet to be addressed regarding the negative aspect of the immune response known as original antigenic sin. Here, we demonstrate that the breadth of neutralizing antibodies against SARS-CoV-2 variants is barely elicited by immunizing monovalent viral antigens via vaccination or natural infection in mice and human subjects. However, vaccination of Omicron BA.1 RBD to pre-immunized mice with the original RBD conferred sustained neutralizing activity to BA.1 and BA.2 not only original pseudoviruses. The acquisition of neutralizing antibody breadth was further confirmed in vaccinated-then-Omicron convalescent human sera in which neutralizing activity against BA.1 and BA.2 pseudoviruses was highly induced. Thus, our data suggest that Omicron-specific vaccines or the infection with Omicron viruses can boost potent neutralizing antibodies to the Omicron variants even in the host pre-vaccinated with the original antigen.


Subject(s)
COVID-19 , Animals , Humans , Mice , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination
7.
Eur J Inorg Chem ; 2022(26): e202200322, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-35942204

ABSTRACT

The solid-state thermal structure transformation of methylammonium vanadate, (CH3NH3)VO3, from -150 °C to 350 °C is reported. Variable-temperature X-ray single-crystal structure analysis at 23, 0, -50, -100, and -150 °C reveal (CH3NH3)VO3 comprises of methylammonium cations and "snake-like" ([VO3]-)n anion chains propagating along the c-direction in the Pna21 space group. In between -150 and -100 °C, we observe a reversible structural transformation due to the re-orientation of the methylammonium cations in the crystal packing, which is also confirmed by the reversible profiles observed in differential scanning calorimetry. The methylammonium vanadate is stable until at ca. 100 °C and further heating releases methylamine and water and V2O5 is formed at ca. 275 °C . Furthermore, we show that the methylammonium vanadate can be used as a negative staining reagent for visualizing SARS-CoV-2, allowing us to discern the spike proteins from the body of the virus using transmission electron microscopy.

8.
Biocontrol Sci ; 26(3): 177-180, 2021.
Article in English | MEDLINE | ID: mdl-34556620

ABSTRACT

Ethanol is an effective disinfectant against the novel coronavirus SARS-CoV-2. However, its effective concentration has not been shown, and we therefore analyzed the effects of different concentrations of ethanol on SARS-CoV-2. When SARS-CoV-2 was treated with varying ethanol concentrations and examined for changes in infectivity, the ethanol concentration at which 99% of the infectious titers were reduced was 24.1% (w/w) [29.3% (v/v)]. For reference, ethanol susceptibility was also examined with other envelope viruses, including influenza virus, vesicular stomatitis virus in the family Rhabdoviridae, and Newcastle disease virus in the family Paramyxoviridae, and the 99% inhibitory concentrations were found to be 28.8%(w/w) [34.8% (v/v)], 24.0% (w/w) [29.2% (v/v)], and 13.3% (w/w) [16.4% (v/v)], respectively. Some differences from SARS-CoV-2 were observed, but the differences were not significant. It was concluded that ethanol at a concentration of 30%(w/w) [36.2% (v/v)] almost completely inactivates SARS-CoV-2.


Subject(s)
Disinfectants/pharmacology , Ethanol/pharmacology , SARS-CoV-2/drug effects , COVID-19/virology , Disinfectants/analysis , Ethanol/analysis , Humans , SARS-CoV-2/growth & development , SARS-CoV-2/physiology , Virus Inactivation/drug effects , Viruses/drug effects , Viruses/growth & development
9.
Article in English | MEDLINE | ID: mdl-31871477

ABSTRACT

An influenza virus epidemic is an important issue in public hygiene, and continuous development on an effective drug is required. Kampo medicine is a traditional medicine that is used clinically for treatment of various diseases in Japan and other East Asian countries. We evaluated the effects of the Kampo drugs maoto, kakkonto, senkyuchachosan, jinkokato, and bakumondoto, which are prescribed for treatment of respiratory symptoms including symptoms caused by influenza, on influenza virus replication in cultured cells. Culture media of influenza virus-infected MDCK(+) cells were tested for hemagglutination and infectivity at 24 h after the addition of Kampo drugs at various concentrations, and four of the five Kampo drugs were found to inhibit virus release to the culture media. These drugs inactivated virus infectivity not by acting on virus particles but by acting on virus-infected cells. In addition, when six crude drugs (Atractylodis lanceae rhizome, Citri unshiu pericarpium, Cnidii rhizome, Glycyrrhizae radix, Rehmanniae radix, and Saposhnikoviae radix) that constitute the effective Kampo drugs were examined, the strongest activity was found for Glycyrrhizae radix (IC50 = 0.27 mg/ml), which selectively suppressed viral protein synthesis. Since Glycyrrhizae radix is contained in many Kampo drugs, it may give anti-influenza virus activity to a broad range of Kampo drugs.

10.
Sci Adv ; 5(5): eaav8801, 2019 05.
Article in English | MEDLINE | ID: mdl-31058226

ABSTRACT

The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.

11.
FEBS Open Bio ; 9(4): 618-628, 2019 04.
Article in English | MEDLINE | ID: mdl-30984537

ABSTRACT

The enzyme 5,10-methylenetetrahydrofolate dehydrogenase (MTHFD) is essential for the production of certain amino acids (glycine, serine, and methionine) and nucleic acids (thymidylate and purine). Here, we identified a cDNA encoding this enzyme from the silkworm Bombyx mori. The recombinant B. mori MTHFD (bmMTHFD) expressed in Escherichia coli recognized 5,10-methylenetetrahydrofolate and 5,10-methenyltetrahydrofolate as substrate in the presence of NADP + as well as NAD +. The bmMTHFD structure was determined at a resolution of 1.75 Å by X-ray crystallography. Site-directed mutagenesis indicated that the amino acid residue Tyr49 contributed to its catalytic activity. Our findings provide insight into the mechanism underlying the activity of MTHFD from B. mori and potentially other insects and may therefore facilitate the development of inhibitors specific to MTHFD as insecticides.


Subject(s)
Bombyx/genetics , Insect Proteins/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Amino Acid Sequence , Animals , Bombyx/enzymology , Bombyx/metabolism , DNA, Complementary/chemistry , DNA, Complementary/genetics , DNA, Complementary/metabolism , Escherichia coli/genetics , Insect Proteins/chemistry , Insect Proteins/metabolism , Methylenetetrahydrofolate Dehydrogenase (NADP)/chemistry , Methylenetetrahydrofolate Dehydrogenase (NADP)/metabolism , Molecular Structure , Mutagenesis, Site-Directed , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment
12.
Structure ; 27(3): 439-448.e3, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30581044

ABSTRACT

Nearly all viruses of the Reoviridae family possess a multi-layered capsid consisting of an inner layer with icosahedral T = 1 symmetry and a second-outer layer (composed of 260 copies of a trimeric protein) exhibiting icosahedral T = 13 symmetry. Here we describe the construction and structural evaluation of an assembly intermediate of the Rice dwarf virus of the family Reoviridae stalled at the second capsid layer via targeted disruption of the trimer-trimer interaction interface in the second-layer capsid protein. Structural determination was performed by conventional and Zernike/Volta phase-contrast cryoelectron microscopy. The assembly defect second-layer capsid trimers bound exclusively to the outer surface of the innermost capsid layer at the icosahedral 3-fold axis. Furthermore, the second-layer assembly could not proceed without specific inter-trimer interactions. Our results suggest that the correct assembly pathway for second-layer capsid formation is highly controlled at the inter-layer and inter-trimer interactions.


Subject(s)
Capsid/chemistry , Reoviridae/physiology , Cryoelectron Microscopy , Molecular Conformation , Virus Assembly
13.
Sci Rep ; 8(1): 16835, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30443011

ABSTRACT

Previously, we found an unclassified glutathione S-transferase 2 (bmGSTu2) in the silkworm Bombyx mori that conjugates glutathione to 1-chloro-2,4-dinitrobenzene and also metabolises diazinon, an organophosphate insecticide. Here, we provide a structural and genome-editing characterisation of the diazinon-metabolising glutathione S-transferase in B. mori. The structure of bmGSTu2 was determined at 1.68 Å by X-ray crystallography. Mutation of putative amino acid residues in the substrate-binding site showed that Pro13, Tyr107, Ile118, Phe119, and Phe211 are crucial for enzymatic function. bmGSTu2 gene disruption resulted in a decrease in median lethal dose values to an organophosphate insecticide and a decrease in acetylcholine levels in silkworms. Taken together, these results indicate that bmGSTu2 could metabolise an organophosphate insecticide. Thus, this study provides insights into the physiological role of bmGSTu2 in silkworms, detoxification of organophosphate insecticides, and drug targets for the development of a novel insecticide.


Subject(s)
Bombyx/enzymology , Bombyx/genetics , Diazinon/metabolism , Gene Editing , Genome, Insect , Glutathione Transferase/chemistry , Glutathione Transferase/genetics , Acetylcholine/metabolism , Alleles , Amino Acid Sequence , Animals , Base Sequence , Crystallography, X-Ray , Electrons , Mutation/genetics
14.
Biophys Rev ; 10(2): 659-665, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29243088

ABSTRACT

Rice dwarf virus (RDV) of the family Reoviridae and genus Phytoreovirus, is the cause of rice dwarf disease, a major negative effector of rice production throughout East Asia, including Japan. RDV has an icosahedral double-layered shell of approximately 70 nm diameter. The structural proteins constituting the capsid can self-assemble into a correct particle without requiring the help of any external factors in vitro. A total of more than 900 components assemble to make the full particle. A series of structural and functional studies of RDV, including X-ray crystallography and cryo-electron microscopy, suggest a hierarchical self-assembly mechanism involving both homologous and heterologous interactions. As such, systems for the recognition of each component should be essential for particle formation.

15.
Biochem Biophys Res Commun ; 492(2): 166-171, 2017 10 14.
Article in English | MEDLINE | ID: mdl-28803983

ABSTRACT

Prostaglandins are involved in many physiological processes, and prostaglandin synthases facilitate the detoxification of xenobiotics as well as endogenous compounds, such as through glutathione conjugation. Specifically, prostaglandin D synthase (PGDS) catalyzes the isomerization of PGH2 to PGD2. Here we report the identification and structural analysis of PGDS from the brown planthopper rice pest Nilaparvata lugens (nlPGDS), which belongs to the sigma-class glutathione transferases. The structure of nlPGDS in complex with glutathione was determined at a resolution of 2.0 Å by X-ray crystallography. Bound glutathione was localized to the glutathione-binding site (G-site). Enzyme activity measurements following site-directed mutagenesis of nlPGDS indicated that amino acid residues Tyr8, Leu14, Trp39, Lys43, Gln50, Val51, Gln63, and Ser64 in the G-site contribute to its catalytic activity. To our knowledge, this represents the first report of a PGDS in insects. Our findings provide insights into the mechanism of nlPGDS activity and potentially that of other insects and therefore may facilitate the development of more effective and safe insecticides.


Subject(s)
Glutathione/metabolism , Hemiptera/enzymology , Intramolecular Oxidoreductases/chemistry , Intramolecular Oxidoreductases/metabolism , Lipocalins/chemistry , Lipocalins/metabolism , Animals , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Hemiptera/chemistry , Hemiptera/metabolism , Models, Molecular , Oryza/parasitology , Protein Conformation
16.
Sci Data ; 3: 160064, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27478984

ABSTRACT

Single particle diffractive imaging data from Rice Dwarf Virus (RDV) were recorded using the Coherent X-ray Imaging (CXI) instrument at the Linac Coherent Light Source (LCLS). RDV was chosen as it is a well-characterized model system, useful for proof-of-principle experiments, system optimization and algorithm development. RDV, an icosahedral virus of about 70 nm in diameter, was aerosolized and injected into the approximately 0.1 µm diameter focused hard X-ray beam at the CXI instrument of LCLS. Diffraction patterns from RDV with signal to 5.9 Ångström were recorded. The diffraction data are available through the Coherent X-ray Imaging Data Bank (CXIDB) as a resource for algorithm development, the contents of which are described here.


Subject(s)
Oryza/virology , Reoviridae/isolation & purification , Virion , Algorithms , Particle Accelerators , X-Rays
17.
Biochem Biophys Res Commun ; 474(1): 104-110, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27103441

ABSTRACT

We report a new member of the aldo-keto reductase (AKR) superfamily in the silkworm Bombyx mori. Based on its amino acid sequence, the new enzyme belongs to the AKR2 family and was previously assigned the systematic name AKR2E5. In the present study, recombinant AKR2E5 was expressed, purified to homogeneity, and characterized. The X-ray crystal structures were determined at 2.2 Å for the apoenzyme and at 2.3 Å resolution for the NADPH-AKR2E5 complex. Our results demonstrate that AKR2E5 is a 40-kDa monomer and includes the TIM- or (ß/α)8-barrel typical for other AKRs. We found that AKR2E5 uses NADPH as a cosubstrate to reduce carbonyl compounds such as DL-glyceraldehyde, xylose, 3-hydroxy benzaldehyde, 17α-hydroxy progesterone, 11-hexadecenal, and bombykal. No NADH-dependent activity was detected. Site-directed mutagenesis of AKR2E5 indicates that amino acid residues Asp70, Tyr75, Lys104, and His137 contribute to catalytic activity, which is consistent with the data on other AKRs. To the best of our knowledge, AKR2E5 is only the second AKR characterized in silkworm. Our data should contribute to further understanding of the functional activity of insect AKRs.


Subject(s)
Aldehyde Reductase/chemistry , Aldehyde Reductase/ultrastructure , Bombyx/enzymology , NADP/chemistry , Aldo-Keto Reductases , Amino Acid Sequence , Animals , Binding Sites , Enzyme Activation , Molecular Sequence Data , NADP/ultrastructure , Protein Binding , Protein Conformation , Substrate Specificity
18.
J Biochem ; 159(2): 181-90, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26374901

ABSTRACT

The minor outer capsid protein P2 of Rice dwarf virus (RDV), a member of the genus Phytoreovirus in the family Reoviridae, is essential for viral cell entry. Here, we clarified the structure of P2 and the interactions to host insect cells. Negative stain electron microscopy (EM) showed that P2 proteins are monomeric and flexible L-shaped filamentous structures of ∼20 nm in length. Cryo-EM structure revealed the spatial arrangement of P2 in the capsid, which was prescribed by the characteristic virion structure. The P2 proteins were visualized as partial rod-shaped structures of ∼10 nm in length in the cryo-EM map and accommodated in crevasses on the viral surface around icosahedral 5-fold axes with hydrophobic interactions. The remaining disordered region of P2 assumed to be extended to the radial direction towards exterior. Electron tomography clearly showed that RDV particles were away from the cellular membrane at a uniform distance and several spike-like densities, probably corresponding to P2, connecting a viral particle to the host cellular membrane during cell entry. By combining the in vitro and in vivo structural information, we could gain new insights into the detailed mechanism of the cell entry of RDV.


Subject(s)
Capsid Proteins/ultrastructure , Capsid/ultrastructure , Oryza/virology , Reoviridae/ultrastructure , Virus Internalization , Animals , Capsid Proteins/isolation & purification , Cell Membrane/ultrastructure , Cells, Cultured , Cryoelectron Microscopy , Electron Microscope Tomography , Hemiptera , Virion/ultrastructure
19.
Arch Biochem Biophys ; 566: 36-42, 2015 Jan 15.
Article in English | MEDLINE | ID: mdl-25497345

ABSTRACT

Glutathione transferases (GSTs) are a major class of detoxification enzymes that play a central role in the defense against environmental toxicants and oxidative stress. Here, we studied the crystal structure of a delta-class glutathione transferase from Nilaparvata lugens, nlGSTD, to gain insights into its catalytic mechanism. The structure of nlGSTD in complex with glutathione, determined at a resolution of 1.7Å, revealed that it exists as a dimer and its secondary and tertiary structures are similar to those of other delta-class GSTs. Analysis of a complex between nlGSTD and glutathione showed that the bound glutathione was localized to the glutathione-binding site. Site-directed mutagenesis of nlGSTD mutants indicated that amino acid residues Ser11, His52, Glu66, and Phe119 contribute to catalytic activity.


Subject(s)
Glutathione Transferase/chemistry , Glutathione/chemistry , Hemiptera/chemistry , Insect Proteins/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Hemiptera/enzymology , Insect Proteins/genetics , Insect Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Mutation , Protein Binding , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Structure-Activity Relationship
20.
Biol Pharm Bull ; 37(6): 968-78, 2014.
Article in English | MEDLINE | ID: mdl-24882409

ABSTRACT

RNase Po1 is a guanylic acid-specific ribonuclease member of the RNase T1 family from Pleurotus ostreatus. We previously reported that RNase Po1 inhibits the proliferation of human tumor cells, yet RNase T1 and other T1 family RNases are non-toxic. We determined the three-dimensional X-ray structure of RNase Po1 and compared it with that of RNase T1. The catalytic sites are conserved. However, there are three disulfide bonds, one more than in RNase T1. One of the additional disulfide bond is in the catalytic and binding site of RNase Po1, and makes RNase Po1 more stable than RNase T1. A comparison of the electrostatic potential of the molecular surfaces of these two proteins shows that RNase T1 is anionic whereas RNase Po1 is cationic, so RNase Po1 might bind to the plasma membrane electrostatically. We suggest that the structural stability and cationic character of RNase Po1 are critical to the anti-cancer properties of the protein.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Ribonuclease T1/chemistry , Ribonuclease T1/pharmacology , Amino Acid Sequence , Antineoplastic Agents/isolation & purification , Crystallization , Crystallography, X-Ray , Electrophoresis, Polyacrylamide Gel , HL-60 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Molecular Sequence Data , Pleurotus/enzymology , Protein Structure, Secondary , Protein Structure, Tertiary , Ribonuclease T1/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...