Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Toxins (Basel) ; 15(5)2023 04 29.
Article in English | MEDLINE | ID: mdl-37235349

ABSTRACT

Botulinum neurotoxins (BoNTs) are important therapeutic agents. The in vivo median lethal dose (LD50) assay has been commonly used to measure the potency of BoNT commercial preparations. As an alternative, we developed cell-based assays for abobotulinumtoxinA in both powder (Dysport®, Azzalure®) and liquid (Alluzience®) formulations using the in vitro BoCell® system. The assays demonstrated linearity over 50-130% of the expected relative potency, with a correlation coefficient of 0.98. Mean recoveries of 90-108% of the stated potency were observed over this range. The coefficients of variation for powder and liquid formulations, respectively, were 3.6% and 4.0% for repeatability and 8.3% and 5.0% for intermediate precision. A statistically powered comparability assessment of the BoCell® and LD50 assays was performed. Equivalence was demonstrated between the assays for the liquid formulation at release and end of shelf life using a paired equivalence test with predefined equivalence margins. For the powder formulation, the assays were also shown to be equivalent for release samples and when determining loss of potency following thermal degradation. The BoCell® assay was approved for establishing the potency of abobotulinumtoxinA for both powder and liquid formulations in Europe and for the powder formulation only in the USA.


Subject(s)
Botulinum Toxins, Type A , Neurotoxins , Animals , Mice , Powders , Botulinum Toxins, Type A/toxicity , Lethal Dose 50
2.
J Struct Biol ; 214(3): 107876, 2022 09.
Article in English | MEDLINE | ID: mdl-35738335

ABSTRACT

Botulinum Neurotoxins (BoNT) are the most potent toxins currently known. However, they also have therapeutic applications for an increasing number of motor related conditions due to their specificity, and low diffusion into the system. Although the start- and end- points for the BoNT mechanism of action are well-studied, a critical step remains poorly understood. It is theorised that BoNTs undergo a pH-triggered conformational shift, activating the neurotoxin by priming it to form a transmembrane (TM) channel. To test this hypothesis, we combined molecular dynamics (MD) simulations and small-angle x-ray scattering (SAXS), revealing a new conformation of serotype E (BoNT/E). This conformation was exclusively observed in simulations below pH 5.5, as determined by principal component analysis (PCA), and its theoretical SAXS profile matched an experimental SAXS profile obtained at pH 4. Additionally, a localised secondary structural change was observed in MD simulations below pH 5.5, in a region previously identified as instrumental for membrane insertion for serotype A (BoNT/A). These changes were found at a critical pH value for BoNTs in vivo, and may be relevant for their therapeutic use.


Subject(s)
Botulinum Toxins, Type A , Botulinum Toxins , Botulinum Toxins, Type A/chemistry , Hydrogen-Ion Concentration , Scattering, Small Angle , X-Ray Diffraction
3.
MAbs ; 13(1): 1992068, 2021.
Article in English | MEDLINE | ID: mdl-34781832

ABSTRACT

Bioconjugates are an important class of therapeutic molecules. To date, O-glycan-based metabolic glycoengineering has had limited use in this field, due to the complexities of the endogenous O-glycosylation pathway and the lack of an O-glycosylation consensus sequence. Here, we describe the development of a versatile on-demand O-glycosylation system that uses a novel, widely applicable 5 amino acid O-glycosylation tag, and a metabolically engineered UDP-galactose-4-eperimase (GALE) knock-out cell line. Optimization of the primary sequence of the tag enables the production of Fc-based proteins with either single or multiple O-glycans with complexity fully controlled by media supplementation. We demonstrate how the uniformly labeled proteins containing exclusively N-azido-acetylgalactosamine are used for CLICK chemistry-based bioconjugation to generate site-specifically fluorochrome-labeled antibodies, dual-payload molecules, and bioactive Fc-peptides for applications in basic research and drug discovery. To our knowledge, this is the first description of generating a site-specific O-glycosylation system by combining an O-glycosylation tag and a metabolically engineered cell line.


Subject(s)
Click Chemistry , Polysaccharides , Glycosylation , Polysaccharides/chemistry
4.
J Am Soc Mass Spectrom ; 28(9): 1855-1862, 2017 09.
Article in English | MEDLINE | ID: mdl-28484973

ABSTRACT

Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein's size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds. Graphical Abstract ᅟ.


Subject(s)
Ion Mobility Spectrometry/methods , Proteins/chemistry , RNA/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Gases/chemistry
5.
Oncoimmunology ; 6(3): e1280645, 2017.
Article in English | MEDLINE | ID: mdl-28405505

ABSTRACT

Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) is part of a system of signals involved in controlling T-cell activation. Targeting and agonizing GITR in mice promotes antitumor immunity by enhancing the function of effector T cells and inhibiting regulatory T cells. Here, we describe MEDI1873, a novel hexameric human GITR agonist comprising an IgG1 Fc domain, a coronin 1A trimerization domain and the human GITRL extracellular domain (ECD). MEDI1873 was optimized through systematic testing of different trimerization domains, aglycosylation of the GITRL ECD and comparison of different Fc isotypes. MEDI1873 exhibits oligomeric heterogeneity and superiority to an anti-GITR antibody with respect to evoking robust GITR agonism, T-cell activation and clustering of Fc gamma receptors. Further, it recapitulates, in vitro, several aspects of GITR targeting described in mice, including modulation of regulatory T-cell suppression and the ability to increase the CD8+:CD4+ T-cell ratio via antibody-dependent T-cell cytotoxicity. To support translation into a therapeutic setting, we demonstrate that MEDI1873 is a potent T-cell agonist in vivo in non-human primates, inducing marked enhancement of humoral and T-cell proliferative responses against protein antigen, and demonstrate the presence of GITR- and FoxP3-expressing infiltrating lymphocytes in a range of human tumors. Overall our data provide compelling evidence that MEDI1873 is a novel, potent GITR agonist with the ability to modulate T-cell responses, and suggest that previously described GITR biology in mice may translate to the human setting, reinforcing the potential of targeting the GITR pathway as a therapeutic approach to cancer.

6.
Proc Natl Acad Sci U S A ; 114(18): 4673-4678, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28416674

ABSTRACT

Relative to other extrinsic factors, the effects of hydrodynamic flow fields on protein stability and conformation remain poorly understood. Flow-induced protein remodeling and/or aggregation is observed both in Nature and during the large-scale industrial manufacture of proteins. Despite its ubiquity, the relationships between the type and magnitude of hydrodynamic flow, a protein's structure and stability, and the resultant aggregation propensity are unclear. Here, we assess the effects of a defined and quantified flow field dominated by extensional flow on the aggregation of BSA, ß2-microglobulin (ß2m), granulocyte colony stimulating factor (G-CSF), and three monoclonal antibodies (mAbs). We show that the device induces protein aggregation after exposure to an extensional flow field for 0.36-1.8 ms, at concentrations as low as 0.5 mg mL-1 In addition, we reveal that the extent of aggregation depends on the applied strain rate and the concentration, structural scaffold, and sequence of the protein. Finally we demonstrate the in situ labeling of a buried cysteine residue in BSA during extensional stress. Together, these data indicate that an extensional flow readily unfolds thermodynamically and kinetically stable proteins, exposing previously sequestered sequences whose aggregation propensity determines the probability and extent of aggregation.


Subject(s)
Antibodies, Monoclonal/chemistry , Granulocyte Colony-Stimulating Factor/chemistry , Hydrodynamics , Protein Aggregates , Serum Albumin, Bovine/chemistry , beta 2-Microglobulin/chemistry , Animals , Cattle , Humans , Kinetics , Protein Stability
7.
Anal Chem ; 89(4): 2361-2368, 2017 02 21.
Article in English | MEDLINE | ID: mdl-28194941

ABSTRACT

Antibodies are an important class of drugs, comprising more than half of all new FDA approvals. Therapeutic antibodies must be chemically stable both in storage and in vivo, following administration to patients. Deamidation is a major degradation pathway for all natural and therapeutic proteins circulating in blood. Here, the linkage between deamidation propensity and structural dynamics is investigated by examining two antibodies with differing specificities. While both antibodies share a canonical asparagine-glycine (NG) motif in a structural loop, this is prone to deamidation in one of the antibodies but not the other. We found that the hydrogen-exchange rate at the adjacent two amides, often the autocatalytic nucleophiles in deamidation, correlated with the rate of degradation. This previously unreported observation was confirmed upon mutation to stabilize the deamidation lability via a generally applicable orthogonal engineering strategy presented here. We anticipate that the structural insight into chemical degradation in full-length monoclonal antibodies and the high-resolution hydrogen-exchange methodology used will have broad application across biochemical study and drug discovery and development.


Subject(s)
Amides/metabolism , Antibodies, Monoclonal/metabolism , Asparagine/metabolism , Mass Spectrometry/methods , Amides/chemistry , Antibodies, Monoclonal/chemistry , Asparagine/chemistry , Catalysis , Deuterium Exchange Measurement , Humans , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism
8.
MAbs ; 9(1): 104-113, 2017 01.
Article in English | MEDLINE | ID: mdl-27834568

ABSTRACT

Excessive transforming growth factor (TGF)-ß is associated with pro-fibrotic responses in lung disease, yet it also plays essential roles in tissue homeostasis and autoimmunity. Therefore, selective inhibition of excessive and aberrant integrin-mediated TGF-ß activation via targeting the α-v family of integrins is being pursued as a therapeutic strategy for chronic lung diseases, to mitigate any potential safety concerns with global TGF-ß inhibition. In this work, we reveal a novel mechanism of inhibiting TGF-ß activation utilized by an αvß8 targeting antibody, 37E1B5. This antibody blocks TGF-ß activation while not inhibiting cell adhesion. We show that an N-linked complex-type Fab glycan in H-CDR2 of 37E1B5 is directly involved in the inhibition of latent TGF-ß activation. Removal of the Fab N-glycosylation site by single amino acid substitution, or removal of N-linked glycans by enzymatic digestion, drastically reduced the antibody's ability to inhibit latency-associated peptide (LAP) and αvß8 association, and TGF-ß activation in an αvß8-mediated TGF-ß signaling reporter assay. Our results indicate a non-competitive, allosteric inhibition of 37E1B5 on αvß8-mediated TGF-ß activation. This unique, H-CDR2 glycan-mediated mechanism may account for the potent but tolerable TGF-b activation inhibition and lack of an effect on cellular adhesion by the antibody.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Complementarity Determining Regions/chemistry , Integrins/antagonists & inhibitors , Transforming Growth Factor beta/antagonists & inhibitors , Animals , Antibodies, Monoclonal/pharmacokinetics , Complementarity Determining Regions/immunology , Glycosylation , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Mice , Polysaccharides/chemistry , Protein Processing, Post-Translational
9.
Sci Rep ; 6: 38644, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27995962

ABSTRACT

Uncontrolled self-association is a major challenge in the exploitation of proteins as therapeutics. Here we describe the development of a structural proteomics approach to identify the amino acids responsible for aberrant self-association of monoclonal antibodies and the design of a variant with reduced aggregation and increased serum persistence in vivo. We show that the human monoclonal antibody, MEDI1912, selected against nerve growth factor binds with picomolar affinity, but undergoes reversible self-association and has a poor pharmacokinetic profile in both rat and cynomolgus monkeys. Using hydrogen/deuterium exchange and cross-linking-mass spectrometry we map the residues responsible for self-association of MEDI1912 and show that disruption of the self-interaction interface by three mutations enhances its biophysical properties and serum persistence, whilst maintaining high affinity and potency. Immunohistochemistry suggests that this is achieved via reduction of non-specific tissue binding. The strategy developed represents a powerful and generic approach to improve the properties of therapeutic proteins.


Subject(s)
Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/metabolism , Protein Engineering/methods , Animals , Antibodies, Monoclonal/pharmacokinetics , Biophysical Phenomena , Chromatography, Gel , Enzyme-Linked Immunosorbent Assay , HEK293 Cells , Humans , Hydrogen , Mice , Mutation/genetics , Organ Specificity , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Multimerization , Rats , Spectrometry, Mass, Electrospray Ionization , Surface Properties , Viscosity
10.
Angew Chem Int Ed Engl ; 54(50): 15156-9, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26482340

ABSTRACT

Immunoglobulin G (IgG) monoclonal antibodies (mAbs) are a major class of medicines, with high specificity and affinity towards targets spanning many disease areas. The antibody Fc (fragment crystallizable) region is a vital component of existing antibody therapeutics, as well as many next generation biologic medicines. Thermodynamic stability is a critical property for the development of stable and effective therapeutic proteins. Herein, a combination of ion-mobility mass spectrometry (IM-MS) and hydrogen/deuterium exchange mass spectrometry (HDX-MS) approaches have been used to inform on the global and local conformation and dynamics of engineered IgG Fc variants with reduced thermodynamic stability. The changes in conformation and dynamics have been correlated with their thermodynamic stability to better understand the destabilising effect of functional IgG Fc mutations and to inform engineering of future therapeutic proteins.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Thermodynamics , Deuterium Exchange Measurement , Humans , Mass Spectrometry , Protein Conformation
11.
Nat Commun ; 6: 8327, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26365875

ABSTRACT

In response to infections and irritants, the respiratory epithelium releases the alarmin interleukin (IL)-33 to elicit a rapid immune response. However, little is known about the regulation of IL-33 following its release. Here we report that the biological activity of IL-33 at its receptor ST2 is rapidly terminated in the extracellular environment by the formation of two disulphide bridges, resulting in an extensive conformational change that disrupts the ST2 binding site. Both reduced (active) and disulphide bonded (inactive) forms of IL-33 can be detected in lung lavage samples from mice challenged with Alternaria extract and in sputum from patients with moderate-severe asthma. We propose that this mechanism for the rapid inactivation of secreted IL-33 constitutes a 'molecular clock' that limits the range and duration of ST2-dependent immunological responses to airway stimuli. Other IL-1 family members are also susceptible to cysteine oxidation changes that could regulate their activity and systemic exposure through a similar mechanism.


Subject(s)
Asthma/immunology , Interleukin-33/metabolism , Receptors, Cell Surface/immunology , Receptors, Interleukin/immunology , Animals , Asthma/genetics , Asthma/metabolism , Humans , Interleukin-1 Receptor-Like 1 Protein , Interleukin-33/genetics , Interleukin-33/immunology , Male , Mice , Mice, Inbred BALB C , Oxidation-Reduction , Receptors, Cell Surface/genetics , Receptors, Interleukin/genetics
12.
Nat Commun ; 6: 7877, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26203596

ABSTRACT

Protein tyrosine kinases differ widely in their propensity to undergo rearrangements of the N-terminal Asp-Phe-Gly (DFG) motif of the activation loop, with some, including FGFR1 kinase, appearing refractory to this so-called 'DFG flip'. Recent inhibitor-bound structures have unexpectedly revealed FGFR1 for the first time in a 'DFG-out' state. Here we use conformationally selective inhibitors as chemical probes for interrogation of the structural and dynamic features that appear to govern the DFG flip in FGFR1. Our detailed structural and biophysical insights identify contributions from altered dynamics in distal elements, including the αH helix, towards the outstanding stability of the DFG-out complex with the inhibitor ponatinib. We conclude that the αC-ß4 loop and 'molecular brake' regions together impose a high energy barrier for this conformational rearrangement, and that this may have significance for maintaining autoinhibition in the non-phosphorylated basal state of FGFR1.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 1/metabolism , Escherichia coli , Humans , Imidazoles , Kinetics , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Pyridazines , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors
13.
Biotechnol Bioeng ; 112(7): 1472-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25619171

ABSTRACT

Fabs are an important class of antibody fragment as both research reagents and therapeutic agents. There are a plethora of methods described for their recombinant expression and purification. However, these do not address the issue of excessive light chain production that forms light chain dimers nor do they describe a universal purification strategy. Light chain dimer impurities and the absence of a universal Fab purification strategy present persistent challenges for biotechnology applications using Fabs, particularly around the need for bespoke purification strategies. This study describes methods to address light chain dimer formation during Fab expression and identifies a novel CH 1 affinity resin as a simple and efficient one-step purification for correctly assembled Fab.


Subject(s)
Gene Expression , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Light Chains/biosynthesis , Immunoglobulin Light Chains/isolation & purification , Dimerization , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Light Chains/genetics , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
14.
Mol Cell ; 33(4): 472-82, 2009 Feb 27.
Article in English | MEDLINE | ID: mdl-19250908

ABSTRACT

Ca(2+) elevations are fundamental to cardiac physiology-stimulating contraction and regulating the gene transcription that underlies hypertrophy. How Ca(2+) specifically controls gene transcription on the background of the rhythmic Ca(2+) increases required for contraction is not fully understood. Here we identify a hypertrophy-signaling module in cardiac myocytes that explains how Ca(2+) discretely regulates myocyte hypertrophy and contraction. We show that endothelin-1 (ET-1) stimulates InsP(3)-induced Ca(2+) release (IICR) from perinuclear InsP(3)Rs, causing an elevation in nuclear Ca(2+). Significantly, we show that IICR, but not global Ca(2+) elevations associated with myocyte contraction, couple to the calcineurin (CnA)/NFAT pathway to induce hypertrophy. Moreover, we found that activation of the CnA/NFAT pathway and hypertrophy by isoproterenol and BayK8644, which enhance global Ca(2+) fluxes, was also dependent on IICR and nuclear Ca(2+) elevations. The activation of IICR by these activity-enhancing mediators was explained by their ability to stimulate secretion of autocrine/paracrine ET-1.


Subject(s)
Calcium Signaling , Calcium/metabolism , Endothelin-1/pharmacology , Inositol 1,4,5-Trisphosphate/metabolism , Myocytes, Cardiac/metabolism , Animals , Calcineurin/metabolism , Cell Enlargement , Cell Nucleus/metabolism , Fluorescent Antibody Technique , Models, Biological , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Rats , Swine , Transfection
15.
J Cell Sci ; 119(Pt 19): 3915-25, 2006 Oct 01.
Article in English | MEDLINE | ID: mdl-16988026

ABSTRACT

Atrial cardiomyocytes make an important contribution to the refilling of ventricles with blood, which enhances the subsequent ejection of blood from the heart. The dependence of cardiac function on the contribution of atria becomes increasingly important with age and exercise. We know much less about the calcium signals that link electrical depolarisation to contraction within atrial myocytes in comparison with ventricular myocytes. Nevertheless, recent work has shed new light on calcium signalling in atrial cells. At an ultrastructural level, atrial and ventricular myocytes have many similarities. However, a few key structural differences, in particular the lack of transverse tubules (;T-tubules') in atrial myocytes, make these two cell types display vastly different calcium patterns in response to depolarisation. The lack of T-tubules in atrial myocytes means that depolarisation provokes calcium signals that largely originate around the periphery of the cells. To engage the contractile machinery, the calcium signal must propagate centripetally deeper into the cells. This inward movement of calcium is ultimately controlled by hormones that can promote or decrease calcium release within the myocytes. Enhanced centripetal movement of calcium in atrial myocytes leads to increased contraction and a more substantial contribution to blood pumping. The calcium signalling paradigm within atrial cells applies to other cardiac cell types that also do not express T-tubules, such as neonatal ventricular myocytes, and Purkinje cells that aid in the spread of electrical depolarisation. Furthermore, during heart failure ventricular myocytes progressively lose their regular T-tubule expression, and their pattern of response resembles that of atrial cells.


Subject(s)
Calcium/physiology , Myocardial Contraction/physiology , Myocytes, Cardiac/physiology , Animals , Atrial Function , Electrophysiology , Heart/growth & development , Heart Failure/metabolism , Humans , Mammals , Models, Biological , Second Messenger Systems , Signal Transduction , Ventricular Function
SELECTION OF CITATIONS
SEARCH DETAIL
...