Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 607(7918): 266-270, 2022 07.
Article in English | MEDLINE | ID: mdl-35831600

ABSTRACT

The global quantum internet will require long-lived, telecommunications-band photon-matter interfaces manufactured at scale1. Preliminary quantum networks based on photon-matter interfaces that meet a subset of these demands are encouraging efforts to identify new high-performance alternatives2. Silicon is an ideal host for commercial-scale solid-state quantum technologies. It is already an advanced platform within the global integrated photonics and microelectronics industries, as well as host to record-setting long-lived spin qubits3. Despite the overwhelming potential of the silicon quantum platform, the optical detection of individually addressable photon-spin interfaces in silicon has remained elusive. In this work, we integrate individually addressable 'T centre' photon-spin qubits in silicon photonic structures and characterize their spin-dependent telecommunications-band optical transitions. These results unlock immediate opportunities to construct silicon-integrated, telecommunications-band quantum information networks.

2.
Sci Rep ; 8(1): 221, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29317728

ABSTRACT

High precision, high numerical aperture mirrors are desirable for mediating strong atom-light coupling in quantum optics applications and can also serve as important reference surfaces for optical metrology. In this work we demonstrate the fabrication of highly-precise hemispheric mirrors with numerical aperture NA = 0.996. The mirrors were fabricated from aluminum by single-point diamond turning using a stable ultra-precision lathe calibrated with an in-situ white-light interferometer. Our mirrors have a diameter of 25 mm and were characterized using a combination of wide-angle single-shot and small-angle stitched multi-shot interferometry. The measurements show root-mean-square (RMS) form errors consistently below 25 nm. The smoothest of our mirrors has a RMS error of 14 nm and a peak-to-valley (PV) error of 88 nm, which corresponds to a form accuracy of λ/50 for visible optics.

SELECTION OF CITATIONS
SEARCH DETAIL
...