Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Water Res ; 258: 121811, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38833811

ABSTRACT

Urban stormwater runoff is considered a key component of future water supply portfolios for water-stressed cities. Beneficial use of runoff, such as capture for recharge of drinking water aquifers, relies on improved stormwater treatment. Many dissolved constituents, including metals and trace organic contaminants (TrOCs) such as hydrophilic pesticides and poly- and perfluoroalkyl substances (PFASs), are of concern due to their toxicity, persistence, prevalence in stormwater runoff, and poor removal in conventional stormwater control measures. This study explores the operational flow rate limitations of black carbon (BC)-amended engineered media filters for removal of a wide suite of dissolved metals and TrOCs and provides validation for a previously developed predictive TrOC transport model. Column experiments were conducted with face velocities of 40 and 60 cm h-1 to assess Douglas Fir-based biochar and regenerated activated carbon (RAC) filter performance in light of media-contaminant removal kinetic limitations. This study found that increasing the face velocity in BC-amended filters to 40 and 60 cm h-1, which are representative of field conditions, decreased the removal of total suspended solids, turbidity, dissolved hydrophilic TrOCs, and PFASs when expressed as volume treated relative to previous studies conducted at 20 cm h-1. Dissolved metals and hydrophobic TrOCs removal were not substantially affected by the increased flow rates. A predictive 1-d intraparticle pore diffusion-limited sorption model with sorption and effective tortuosity parameters determined previously from experiments conducted at 20 cm h-1 was validated for these higher flow rates. This work provides insights to the kinetic limitations of contaminant removal within biochar and RAC filters and implications for stormwater filter design and operation.

2.
Environ Sci Technol ; 58(20): 8792-8802, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38719742

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) from aqueous film forming foams (AFFFs) can hinder bioremediation of co-contaminants such as trichloroethene (TCE) and benzene, toluene, ethylbenzene, and xylene (BTEX). Anaerobic dechlorination can require bioaugmentation of Dehalococcoides, and for BTEX, oxygen is often sparged to stimulate in situ aerobic biodegradation. We tested PFAS inhibition to TCE and BTEX bioremediation by exposing an anaerobic TCE-dechlorinating coculture, an aerobic BTEX-degrading enrichment culture, and an anaerobic toluene-degrading enrichment culture to n-dimethyl perfluorohexane sulfonamido amine (AmPr-FHxSA), perfluorohexane sulfonamide (FHxSA), perfluorohexanesulfonic acid (PFHxS), or nonfluorinated surfactant sodium dodecyl sulfate (SDS). The anaerobic TCE-dechlorinating coculture was resistant to individual PFAS exposures but was inhibited by >1000× diluted AFFF. FHxSA and AmPr-FHxSA inhibited the aerobic BTEX-degrading enrichment. The anaerobic toluene-degrading enrichment was not inhibited by AFFF or individual PFASs. Increases in amino acids in the anaerobic TCE-dechlorinating coculture compared to the control indicated stress response, whereas the BTEX culture exhibited lower concentrations of all amino acids upon exposure to most surfactants (both fluorinated and nonfluorinated) compared to the control. These data suggest the main mechanisms of microbial toxicity are related to interactions with cell membrane synthesis as well as protein stress signaling.


Subject(s)
Biodegradation, Environmental , Hydrocarbons, Aromatic , Hydrocarbons, Aromatic/metabolism , Trichloroethylene/metabolism , Sulfonamides/metabolism
3.
Environ Pollut ; : 124234, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815892

ABSTRACT

Per- and poly-fluoroalkyl substances (PFASs) are contaminants of emerging concern, yet the understanding of factors that control their leaching and release from contaminated soils remains limited. This study aimed to investigate the impact of dissolved organic carbon (DOC) on the release of PFASs-specifically, perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), and perfluorooctanoic acid (PFOA)-from soils contaminated by aqueous film forming foam (AFFF)-. Batch aqueous leaching experiments were conducted on AFFF-contaminated soils under alkaline solution conditions (pH 9.5, 10.5, and 12) as it enhances leaching of both PFAS and DOC. Leaching of PFOS was significantly increased under alkaline conditions. Although the leaching of PFAS generally increased with pH, PFOS appeared to be more retained under the very alkaline pH conditions used in this study. At the same solution pH, leaching of PFOS and DOC was less in Ca(OH)2 than in NaOH. The retention of PFOS under these conditions may be attributable to the shielding of the negative charge of the soil components and colloids (e.g., DOC and clay minerals) in the leachates and/or the screening of negative charges on head groups of PFOS due to the high concentration of divalent cations. Solution chemistry affected desorption of PFOS more than PFHxS and PFOA. The study highlights that the influence of DOC on PFAS leaching and transport can be very complex, and depends on leachate chemistry (e.g., pH and cation type), PFAS chemistry, the magnitude of PFAS contamination and factors that influence the solid:liquid partitioning of organic carbon in soil.

4.
Environ Sci Technol ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805641

ABSTRACT

Though long recognized as synthetic precursors to other poly- and perfluoroalkyl substances (PFASs), most poly- and perfluoroalkyl sulfonyl halides (PASXs) cannot be directly measured and have generally received minimal attention. Inspired by the redox reaction between sulfonyl halide groups and p-toluenethiol in organic chemistry, we developed a novel nontarget analysis strategy for PASXs by intergrating derivatization and specific fragment-based liquid chromatography-high resolution mass spectrometry screening for m/z 82.961 [SO2F-] and m/z 95.934 [S2O2-]. By using this strategy, we discovered 11 PASXs, namely, perfluoroalkyl sulfonyl fluorides (5), polyfluoroalkyl sulfonyl fluorides (2), unsaturated perfluoroalkyl sulfonyl fluoride (1), and perfluoroalkyl sulfonyl chlorides (3) in soil samples collected from an abandoned fluorochemical manufacturing park. These average ∑PASXs concentrations were 1120 µg kg-1 (range: 9.7-9860 µg kg-1), which were very likely to be the key intermediates and undesired byproducts of electrochemical fluorination processes. Spatial variation in the mass ratio of ∑PASXs to ∑PFSAs (range: 0.7-795%) also indicates their different transportation pathways. More importantly, the decline of PASXs and increase of perfluoroalkyl sulfonates (when compared to a prior study at this site) suggest the continued hydrolysis of PASXs and the relatively fast environmental transformation rates in the abandoned fluorochemical park soils. Overall, these findings demonstrated the utility of a novel nontarget analysis strategy, which may change most PASXs from inferred precursors to measured intermediates and further could be adapted for structures, distribution, and transformation studies of PFASXs in other matrices.

5.
J Contam Hydrol ; 264: 104359, 2024 May.
Article in English | MEDLINE | ID: mdl-38697007

ABSTRACT

Poly- and perfluoroalkyl substance (PFAS) leaching from unsaturated soils impacted with aqueous film-forming foams (AFFFs) is an environmental challenge that remains difficult to measure and predict. Complicating measurements and predictions of this process is a lack of understanding between the PFAS concentrations measured in a collected environmental unsaturated soil sample, and the PFAS concentrations measured in the corresponding porewater using field-deployed lysimeters. The applicability of bench-scale batch testing to assess this relationship also remains uncertain. In this study, field-deployed porous cup suction lysimeters were used to measure PFAS porewater concentrations in unsaturated soils at 5 AFFF-impacted sites. Field-measured PFAS porewater concentrations were compared to those measured in porewater extracted in the laboratory from collected unsaturated soil cores, and from PFAS concentrations measured in the laboratory using batch soil slurries. Results showed that, despite several years since the last AFFF release at most of the test sites, precursors were abundant in 3 out of the 5 sites. Comparison of field lysimeter results to laboratory testing suggested that the local equilibrium assumption was valid for at least 3 of the sites and conditions of this study. Surprisingly, PFAS accumulation at the air-water interface was orders of magnitude less than expected at two of the test sites, suggesting potential gaps in the understanding of PFAS accumulation at the air-water interface at AFFF-impacted sites. Finally, results herein suggest that bench-scale testing on unsaturated soils can in some cases be used to inform on PFAS in situ porewater concentrations.


Subject(s)
Environmental Monitoring , Fluorocarbons , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/chemistry , Fluorocarbons/chemistry , Fluorocarbons/analysis , Soil/chemistry , Water Pollutants, Chemical/analysis , Air/analysis , Water/chemistry
6.
Environ Sci Technol ; 58(22): 9863-9874, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38780413

ABSTRACT

The long-term leaching of polyfluoroalkyl substances (PFAS) within the vadose zone of an AFFF application site for which the depth to groundwater is approximately 100 m was investigated by characterizing the vertical distribution of PFAS in a high spatial resolution. The great majority (99%) of PFAS mass resides in the upper 3 m of the vadose zone. The depths to which each PFAS migrated, quantified by moment analysis, is an inverse function of molar volume, demonstrating chromatographic separation. The PFAS were operationally categorized into three chain-length groups based on the three general patterns of retention observed. The longest-chain (>∼335 cm3/mol molar volume) PFAS remained within the uppermost section of the core, exhibiting minimal leaching. Conversely, the shortest-chain (<∼220 cm3/mol) PFAS accumulated at the bottom of the interval, which coincides with the onset of a calcic horizon. PFAS with intermediate-chain lengths were distributed along the length of the core, exhibiting differential magnitudes of leaching. The minimal or differential leaching observed for the longest- and intermediate-chain-length PFAS, respectively, demonstrates that retention processes significantly impacted migration. The accumulation of shorter-chain PFAS at the bottom of the core is hypothesized to result from limited deep infiltration and potential-enhanced retention associated with the calcic horizon.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Groundwater/chemistry , Environmental Monitoring
8.
Environ Sci Technol ; 58(3): 1690-1699, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38189783

ABSTRACT

Monitoring contamination from per- and polyfluoroalkyl substances (PFASs) in water systems impacted by aqueous film-forming foams (AFFFs) typically addresses a few known PFAS groups. Given the diversity of PFASs present in AFFFs, current analytical approaches do not comprehensively address the range of PFASs present in these systems. A suspect-screening and nontarget analysis (NTA) approach was developed and applied to identify novel PFASs in groundwater samples contaminated from historic AFFF use. A total of 88 PFASs were identified in both passive samplers and grab samples, and these were dominated by sulfonate derivatives and sulfonamide-derived precursors. Several ultrashort-chain (USC) PFASs (≤C3) were detected, 11 reported for the first time in Australian groundwater. Several transformation products were identified, including perfluoroalkane sulfonamides (FASAs) and perfluoroalkane sulfinates (PFASis). Two new PFASs were reported (((perfluorohexyl)sulfonyl)sulfamic acid; m/z 477.9068 and (E)-1,1,2,2,3,3,4,5,6,7,8,8,8-tridecafluorooct-6-ene-1-sulfonic acid; m/z 424.9482). This study highlights that several PFASs are overlooked using standard target analysis, and therefore, the potential risk from all PFASs present is likely to be underestimated.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Australia , Water
9.
J Hazard Mater ; 466: 133591, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38295728

ABSTRACT

The widespread use of aqueous film-forming foam (AFFF) for firefighting and firefighter training has led to extensive per- and polyfluoroalkyl substance (PFAS) contamination in the environment. Challenges remain in the analytical determination of PFASs via liquid chromatography-mass spectrometry (LC-MS), particularly when attempting to include ultrashort-chain perfluoroalkyl acids (PFAAs) and longer-chain anionic and zwitterionic PFASs in a single direct injection. In this study, we assessed the performance of three analytical LC columns (C18, JJ, and Acclaim columns) to separate targeted and suspect PFASs in AFFF-impacted water samples collected from five sites. The C18 column failed to retain ultrashort-chain PFAAs while the JJ and Acclaim columns were not suitable for hydrophobic PFASs. Ultrashort-chain PFAAs were detected at three sites and comprised 1.6-18% of the total perfluoroalkyl carboxylic and sulfonic acids. Semi-quantified concentrations of suspect PFASs comprised 0.70-13% of the total PFASs. When attempting to capture the entirety of the PFAS mass in a water sample, the C18 column captured the broadest suite of suspect PFASs, while the JJ column quantified the most total PFAS mass. Results of this study highlight the importance and tradeoffs of LC column choice to comprehensively determine the composition of PFASs and their concentrations in AFFF-impacted water samples.

10.
Environ Toxicol Chem ; 43(2): 245-258, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37888867

ABSTRACT

Only a fraction of the total number of per- and polyfluoroalkyl substances (PFAS) are monitored on a routine basis using targeted chemical analyses. We report on an approach toward identifying bioactive substances in environmental samples using effect-directed analysis by combining toxicity testing, targeted chemical analyses, and suspect screening. PFAS compete with the thyroid hormone thyroxin (T4 ) for binding to its distributor protein transthyretin (TTR). Therefore, a TTR-binding bioassay was used to prioritize unknown features for chemical identification in a PFAS-contaminated sediment sample collected downstream of a factory producing PFAS-coated paper. First, the TTR-binding potencies of 31 analytical PFAS standards were determined. Potencies varied between PFAS depending on carbon chain length, functional group, and, for precursors to perfluoroalkyl sulfonic acids (PFSA), the size or number of atoms in the group(s) attached to the nitrogen. The most potent PFAS were the seven- and eight-carbon PFSA, perfluoroheptane sulfonic acid (PFHpS) and perfluorooctane sulfonic acid (PFOS), and the eight-carbon perfluoroalkyl carboxylic acid (PFCA), perfluorooctanoic acid (PFOA), which showed approximately four- and five-times weaker potencies, respectively, compared with the native ligand T4 . For some of the other PFAS tested, TTR-binding potencies were weak or not observed at all. For the environmental sediment sample, not all of the bioactivity observed in the TTR-binding assay could be assigned to the PFAS quantified using targeted chemical analyses. Therefore, suspect screening was applied to the retention times corresponding to observed TTR binding, and five candidates were identified. Targeted analyses showed that the sediment was dominated by the di-substituted phosphate ester of N-ethyl perfluorooctane sulfonamido ethanol (SAmPAP diester), whereas it was not bioactive in the assay. SAmPAP diester has the potential for (bio)transformation into smaller PFAS, including PFOS. Therefore, when it comes to TTR binding, the hazard associated with this substance is likely through (bio)transformation into more potent transformation products. Environ Toxicol Chem 2024;43:245-258. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Prealbumin , Alkanesulfonic Acids/analysis , Sulfonic Acids , Fluorocarbons/toxicity , Carbon
13.
Environ Sci Technol ; 57(44): 17154-17165, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37856848

ABSTRACT

While foam fractionation (FF) process has emerged as a promising technology for removal of per- and polyfluoroalkyl substances (PFASs) from contaminated groundwater, management of the resulting foam concentrates with elevated concentrations of PFASs (e.g., >1 g/L) remains a challenge. Here, we applied hydrothermal alkaline treatment (HALT) to two foam concentrates derived from FF field demonstration projects that treated aqueous film-forming foam (AFFF)-impacted groundwater. Results showed >90% degradation and defluorination within 90 min of treatment (350 °C, 1 M NaOH) of all 62 PFASs (including cations, anions, and zwitterions) identified in foam concentrates. Observed rate constants for degradation of individual perfluoroalkyl sulfonates (PFSAs, CnF2n+1-SO3-), the most recalcitrant class of PFASs, in both foam concentrates were similar to values measured previously in other aqueous matrices, indicating that elevated initial PFAS concentrations (e.g., PFHxSinit = 0.55 g/L), dissolved organic carbon (DOC; up to 4.5 g/L), and salt levels (e.g., up to 325 mg/L chloride) do not significantly affect PFAS reaction kinetics. DOC was partially mineralized by treatment, but a fraction (∼15%) was recalcitrant. Spectroscopic characterization revealed molecular features of the HALT-recalcitrant DOC fraction, and nontarget high-resolution mass spectrometry tentatively identified 129 nonfluorinated HALT-recalcitrant molecules. Analysis of process energy requirements shows that treating PFAS-contaminated foam concentrates with HALT would add minimally (<5%) to the overall energy requirements of an integrated FF-HALT treatment train.


Subject(s)
Fluorocarbons , Groundwater , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis , Groundwater/chemistry , Water , Chlorides/analysis
14.
Environ Sci Technol ; 57(38): 14417-14428, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37699564

ABSTRACT

Improved stormwater treatment is needed to prevent toxic and mobile contaminant transport into receiving waters and allow beneficial use of stormwater runoff. In particular, safe capture of stormwater runoff to augment drinking water supplies is contingent upon removing dissolved trace organic contaminants (TrOCs) not captured by conventional stormwater control measures. This study builds upon a prior laboratory-based column study investigating biochar and regenerated activated carbon (RAC) amendment for removing hydrophilic trace organic contaminants (HiTrOCs) and poly- and perfluoroalkyl substances (PFASs) from stormwater runoff. A robust contaminant transport model framework incorporating time-dependent flow and influent concentration is developed and validated to predict HiTrOC and PFAS transport in biochar- and RAC-amended stormwater filters. Specifically, parameters fit using a sorption-retarded intraparticle pore diffusion transport model were validated using data further along the depth of the column and compared to equilibrium batch isotherms. The transport model and fitted parameters were then used to estimate the lifetime of a hypothetical stormwater filter in Seal Beach, CA, to be 35 ± 6 years for biochar- and 51 ± 17 years for RAC-amended filters, under ideal conditions with no filter clogging. This work offers insights on the kinetics of HiTrOC and PFAS transport within biochar and RAC filters and on the impact of filter design on contaminant removal performance and longevity.


Subject(s)
Caniformia , Fluorocarbons , Seals, Earless , Water Purification , Animals , Rain , Water Supply , Soot
15.
Environ Sci Technol ; 57(38): 14351-14362, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37696050

ABSTRACT

This study elucidates per- and polyfluoroalkyl substance (PFAS) fingerprints for specific PFAS source types. Ninety-two samples were collected from aqueous film-forming foam impacted groundwater (AFFF-GW), landfill leachate, biosolids leachate, municipal wastewater treatment plant effluent (WWTP), and wastewater effluent from the pulp and paper and power generation industries. High-resolution mass spectrometry operated with electrospray ionization in negative mode was used to quantify up to 50 target PFASs and screen and semi-quantify up to 2,266 suspect PFASs in each sample. Machine learning classifiers were used to identify PFASs that were diagnostic of each source type. Four C5-C7 perfluoroalkyl acids and one suspect PFAS (trihydrogen-substituted fluoroethernonanoic acid) were diagnostic of AFFF-GW. Two target PFASs (5:3 and 6:2 fluorotelomer carboxylic acids) and two suspect PFASs (4:2 fluorotelomer-thia-acetic acid and N-methylperfluoropropane sulfonamido acetic acid) were diagnostic of landfill leachate. Biosolids leachates were best classified along with landfill leachates and N-methyl and N-ethyl perfluorooctane sulfonamido acetic acid assisted in that classification. WWTP, pulp and paper, and power generation samples contained few target PFASs, but fipronil (a fluorinated insecticide) was diagnostic of WWTP samples. Our results provide PFAS fingerprints for known sources and identify target and suspect PFASs that can be used for source allocation.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Biosolids , Acetic Acid , Machine Learning
16.
Environ Sci Process Impacts ; 25(5): 996-1006, 2023 May 25.
Article in English | MEDLINE | ID: mdl-37133397

ABSTRACT

Drinking water can be a major source of poly- and perfluoroalkyl substance (PFAS) exposure for humans. The lack of historic data on PFAS drinking-water concentrations and consumption patterns are a limiting factor for developing estimates of past exposure. Here, in contribution to a community-scale PFAS health effects study near fire training facilities that contaminated a local aquifer with PFASs, we present a novel water-infrastructure, mass-balance mixing model coupled to a non-steady state, single-compartment toxicokinetic model that used Monte Carlo simulations to estimate the start of PFAS exposure in drinking water for individuals within three PFAS-impacted communities in El Paso County, Colorado. Our modeling focused on perfluorohexane sulfonic acid (PFHxS) because median serum PFHxS concentrations in a sample of local residents (n = 213) were twelve times the median observed in the U.S. National Health and Nutrition Examination Survey (2015-2016). Modeling results for study participants were grouped according to their community of residence, revealing a median start of exposure for the town of Fountain of 1998 (25-75% interquartile range [IQR], 1992 to 2010), 2006 (IQR 1995 to 2012) for Security, and 2009 (IQR 1996-2012) for Widefield. Based on the towns' locations relative to an identified hydraulically upgradient PFAS source, the modeled exposure sequencing does not completely align with this conceptual flow model, implying the presence of an additional PFAS source for the groundwater between Widefield and Fountain.


Subject(s)
Alkanesulfonic Acids , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Humans , Drinking Water/analysis , Alkanesulfonic Acids/analysis , Colorado , Nutrition Surveys , Toxicokinetics , Water Pollutants, Chemical/analysis , Fluorocarbons/analysis
17.
Environ Sci Technol ; 57(21): 7950-7957, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37189231

ABSTRACT

A remote sampling approach was developed at Eurofins for quantifying per- and polyfluoroalkyl substances (PFASs) in whole blood samples collected using volumetric absorptive microsamplers (VAMSs), which allow for self-collection of blood using a finger prick. This study compares PFAS exposure measured by self-collection of blood using VAMSs to the standard venous serum approach. Blood samples were collected from participants (n = 53) in a community with prior PFAS drinking water contamination using a venous blood draw as well as participant self-collection using VAMSs. Whole blood from the venous tubes was also loaded onto VAMSs to compare differences in capillary vs venous whole blood PFAS levels. Samples were quantified for PFASs using liquid chromatography tandem mass spectrometry and online solid-phase extraction. PFAS levels in serum were highly correlated with measurements in capillary VAMSs (r ≥ 0.91 and p < 0.05). Serum PFAS levels were generally twofold higher than whole blood, reflecting expected differences in their composition. Of interest, FOSA was detected in whole blood (both venous and capillary VAMSs) but not in serum. Overall, these findings indicate that VAMSs are useful self-collection tools for assessing elevated human exposure to PFASs.


Subject(s)
Fluorocarbons , Hematologic Tests , Humans , Mass Spectrometry , Chromatography, Liquid , Fluorocarbons/analysis
18.
Environ Sci Technol ; 57(21): 8053-8064, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37200532

ABSTRACT

Historical releases of aqueous film forming foam (AFFF) are significant sources of poly- and perfluoroalkyl substances (PFASs), including perfluoroalkyl acids (PFAAs) and their precursors, to the environment. While several studies have focused on microbial biotransformation of polyfluorinated precursors to PFAAs, the role of abiotic transformations at AFFF-impacted sites is less clear. Herein, we use photochemically generated hydroxyl radical to demonstrate that environmentally relevant concentrations of hydroxyl radical (•OH) can play a significant role in these transformations. High-resolution mass spectrometry (HRMS) was used to perform targeted analysis, suspect screening, and nontargeted analyses, which were used to identify the major products of AFFF-derived PFASs as perfluorocarboxylic acids, though several potentially semi-stable intermediates were also observed. Using competition kinetics in a UV/H2O2 system, hydroxyl radical rate constants (kOH) for 24 AFFF-derived polyfluoroalkyl precursors were measured to be 0.28 to 3.4 × 109 M-1 s-1. Differences in kOH were observed for compounds with differing headgroups and perfluoroalkyl chain lengths. Also, differences in kOH measured for the only relevant precursor standard available, n-[3-propyl]tridecafluorohexanesulphonamide (AmPr-FHxSA), as compared to AmPr-FHxSA present in AFFF suggest that intermolecular associations in the AFFF matrix may affect kOH. Considering environmentally relevant [•OH]ss, polyfluoroalkyl precursors are expected to exhibit half-lives of ∼8 days in sunlit surface waters and possibly as short as ∼2 h during oxygenation of Fe(II)-rich subsurface systems.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Hydroxyl Radical , Hydrogen Peroxide , Water Pollutants, Chemical/analysis , Water/chemistry
19.
J Hazard Mater ; 457: 131688, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37257384

ABSTRACT

Effective monitoring tools, including passive samplers, are essential for the wide range of per- and polyfluoroalkyl substances (PFASs) in aquatic matrices. However, knowledge of the extent and mechanisms of PFASs sorption with sorbents in a passive sampling context is limited. To address this, sorption behavior of 45 anionic, neutral and zwitterionic PFASs ranging in perfluorocarbon chain length (C3-C16) and functional groups with 11 different commercial sorbents (cross-linked ß-cyclodextrin polymers, activated carbon, anion exchange (AE), cation exchange, hydrophilic-lipophilic balanced (HLB) and non-polar) was investigated. A broad range of equilibrium sorbent-MilliQ water (MQ) distribution coefficients (Kd) were observed (10-1.95 to 108.30 mL g-1). Similar sorbent types (e.g., various AE and HLB sorbents) exhibited very different sorption behavior, likely due to their different polymeric structures and relative importance of sorbate/sorbent interactions other than coulombic interactions. HLB and AE with hydroxyl functionalities are most effective for sampling of the full suite of PFASs. Reduced sorptive affinity was observed in the presence of matrix co-constituents in wastewater influent for most PFASs. HLB had the smallest reduction in log Kd in wastewater suggesting that these sorbents are appropriate for applications in complex matrices. Sufficient sorbent capacity was observed for linear uptake of many target analytes which facilitates passive sampling.

20.
Environ Sci Technol ; 57(20): 7849-7857, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37170785

ABSTRACT

Advanced reduction processes (ARPs) that generate hydrated electrons (eaq-; e.g., UV-sulfite) have emerged as a promising remediation technology for recalcitrant water contaminants, including per- and polyfluoroalkyl substances (PFASs). The effectiveness of ARPs in different natural water matrices is determined, in large part, by the presence of non-target water constituents that act to quench eaq- or shield incoming UV photons from the applied photosensitizer. This study examined the pH-dependent quenching of eaq- by ubiquitous dissolved carbonate species (H2CO3*, HCO3-, and CO32-) and quantified the relative importance of carbonate species to other abundant quenching agents (e.g., H2O, H+, HSO3-, and O2(aq)) during ARP applications. Analysis of laser flash photolysis kinetic data in relation to pH-dependent carbonate acid-base speciation yields species-specific bimolecular rate constants for eaq- quenching by H2CO3*, HCO3-, and CO32- (kH2CO3* = 2.23 ± 0.42 × 109 M-1 s-1, kHCO3- = 2.18 ± 0.73 × 106 M-1 s-1, and kCO32- = 1.05 ± 0.61 × 105 M-1 s-1), with quenching dominated by H2CO3* (which includes both CO2(aq) and H2CO3) at moderately alkaline pH conditions despite it being the minor species. Attempts to apply previously reported rate constants for eaq- quenching by CO2(aq), measured in acidic solutions equilibrated with CO2(g), overpredict quenching observed in this study at higher pH conditions typical of ARP applications. Moreover, kinetic simulations reveal that pH-dependent trends reported for UV-sulfite ARPs that have often been attributed to eaq- quenching by varying [H+] can instead be ascribed to variable acid-base speciation of dissolved carbonate and the sulfite sensitizer.


Subject(s)
Electrons , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Sulfites/chemistry , Carbonates , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...