Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Physiol ; 13: 1016242, 2022.
Article in English | MEDLINE | ID: mdl-36388124

ABSTRACT

As the most abundant cation in archaeal, bacterial, and eukaryotic cells, potassium (K+) is an essential element for life. While much is known about the machinery of transcellular and paracellular K transport-channels, pumps, co-transporters, and tight-junction proteins-many quantitative aspects of K homeostasis in biological systems remain poorly constrained. Here we present measurements of the stable isotope ratios of potassium (41K/39K) in three biological systems (algae, fish, and mammals). When considered in the context of our current understanding of plausible mechanisms of K isotope fractionation and K+ transport in these biological systems, our results provide evidence that the fractionation of K isotopes depends on transport pathway and transmembrane transport machinery. Specifically, we find that passive transport of K+ down its electrochemical potential through channels and pores in tight-junctions at favors 39K, a result which we attribute to a kinetic isotope effect associated with dehydration and/or size selectivity at the channel/pore entrance. In contrast, we find that transport of K+ against its electrochemical gradient via pumps and co-transporters is associated with less/no isotopic fractionation, a result that we attribute to small equilibrium isotope effects that are expressed in pumps/co-transporters due to their slower turnover rate and the relatively long residence time of K+ in the ion pocket. These results indicate that stable K isotopes may be able to provide quantitative constraints on transporter-specific K+ fluxes (e.g., the fraction of K efflux from a tissue by channels vs. co-transporters) and how these fluxes change in different physiological states. In addition, precise determination of K isotope effects associated with K+ transport via channels, pumps, and co-transporters may provide unique constraints on the mechanisms of K transport that could be tested with steered molecular dynamic simulations.

2.
Proc Natl Acad Sci U S A ; 119(43): e2210617119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36252022

ABSTRACT

Carbonate mud represents one of the most important geochemical archives for reconstructing ancient climatic, environmental, and evolutionary change from the rock record. Mud also represents a major sink in the global carbon cycle. Yet, there remains no consensus about how and where carbonate mud is formed. Here, we present stable isotope and trace-element data from carbonate constituents in the Bahamas, including ooids, corals, foraminifera, and algae. We use geochemical fingerprinting to demonstrate that carbonate mud cannot be sourced from the abrasion and mixture of any combination of these macroscopic grains. Instead, an inverse Bayesian mixing model requires the presence of an additional aragonite source. We posit that this source represents a direct seawater precipitate. We use geological and geochemical data to show that "whitings" are unlikely to be the dominant source of this precipitate and, instead, present a model for mud precipitation on the bank margins that can explain the geographical distribution, clumped-isotope thermometry, and stable isotope signature of carbonate mud. Next, we address the enigma of why mud and ooids are so abundant in the Bahamas, yet so rare in the rest of the world: Mediterranean outflow feeds the Bahamas with the most alkaline waters in the modern ocean (>99.7th-percentile). Such high alkalinity appears to be a prerequisite for the nonskeletal carbonate factory because, when Mediterranean outflow was reduced in the Miocene, Bahamian carbonate export ceased for 3-million-years. Finally, we show how shutting off and turning on the shallow carbonate factory can send ripples through the global climate system.


Subject(s)
Carbonates , Geologic Sediments , Bayes Theorem , Calcium Carbonate , Carbonates/analysis , Seawater
3.
Sci Adv ; 7(51): eabj9341, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34910502

ABSTRACT

The history of atmospheric oxygen (PO2) and the processes that act to regulate it remain enigmatic because of difficulties in quantitative reconstructions using indirect proxies. Here, we extend the ice-core record of PO2 using 1.5-million-year-old (Ma) discontinuous ice samples drilled from Allan Hills Blue Ice Area, East Antarctica. No statistically significant difference exists in PO2 between samples at 1.5 Ma and 810 thousand years (ka), suggesting that the Late-Pleistocene imbalance in O2 sources and sinks began around the time of the transition from 40- to 100-ka glacial cycles in the Mid-Pleistocene between ~1.2 Ma and 700 ka. The absence of a coeval secular increase in atmospheric CO2 over the past ~1 Ma requires negative feedback mechanisms such as Pco2-dependent silicate weathering. Fast processes must also act to suppress the immediate Pco2 increase because of the imbalance in O2 sinks over sources beginning in the Mid-Pleistocene.

4.
Nature ; 595(7867): 394-398, 2021 07.
Article in English | MEDLINE | ID: mdl-34262211

ABSTRACT

The evolution of the global carbon and silicon cycles is thought to have contributed to the long-term stability of Earth's climate1-3. Many questions remain, however, regarding the feedback mechanisms at play, and there are limited quantitative constraints on the sources and sinks of these elements in Earth's surface environments4-12. Here we argue that the lithium-isotope record can be used to track the processes controlling the long-term carbon and silicon cycles. By analysing more than 600 shallow-water marine carbonate samples from more than 100 stratigraphic units, we construct a new carbonate-based lithium-isotope record spanning the past 3 billion years. The data suggest an increase in the carbonate lithium-isotope values over time, which we propose was driven by long-term changes in the lithium-isotopic conditions of sea water, rather than by changes in the sedimentary alterations of older samples. Using a mass-balance modelling approach, we propose that the observed trend in lithium-isotope values reflects a transition from Precambrian carbon and silicon cycles to those characteristic of the modern. We speculate that this transition was linked to a gradual shift to a biologically controlled marine silicon cycle and the evolutionary radiation of land plants13,14.


Subject(s)
Carbon Cycle , Carbon , Isotopes , Lithium , Silicon , Aquatic Organisms , Carbon/analysis , Carbon/metabolism , Geologic Sediments/chemistry , Isotopes/analysis , Lithium/analysis , Plants , Seawater/chemistry , Silicon/analysis , Silicon/metabolism
5.
Nat Commun ; 12(1): 148, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33420047

ABSTRACT

Groundwater-derived solute fluxes to the ocean have long been assumed static and subordinate to riverine fluxes, if not neglected entirely, in marine isotope budgets. Here we present concentration and isotope data for Li, Mg, Ca, Sr, and Ba in coastal groundwaters to constrain the importance of groundwater discharge in mediating the magnitude and isotopic composition of terrestrially derived solute fluxes to the ocean. Data were extrapolated globally using three independent volumetric estimates of groundwater discharge to coastal waters, from which we estimate that groundwater-derived solute fluxes represent, at a minimum, 5% of riverine fluxes for Li, Mg, Ca, Sr, and Ba. The isotopic compositions of the groundwater-derived Mg, Ca, and Sr fluxes are distinct from global riverine averages, while Li and Ba fluxes are isotopically indistinguishable from rivers. These differences reflect a strong dependence on coastal lithology that should be considered a priority for parameterization in Earth-system models.

6.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33323482

ABSTRACT

One of the most conserved traits in the evolution of biomineralizing organisms is the taxon-specific selection of skeletal minerals. All modern scleractinian corals are thought to produce skeletons exclusively of the calcium-carbonate polymorph aragonite. Despite strong fluctuations in ocean chemistry (notably the Mg/Ca ratio), this feature is believed to be conserved throughout the coral fossil record, spanning more than 240 million years. Only one example, the Cretaceous scleractinian coral Coelosmilia (ca. 70 to 65 Ma), is thought to have produced a calcitic skeleton. Here, we report that the modern asymbiotic scleractinian coral Paraconotrochus antarcticus living in the Southern Ocean forms a two-component carbonate skeleton, with an inner structure made of high-Mg calcite and an outer structure composed of aragonite. P. antarcticus and Cretaceous Coelosmilia skeletons share a unique microstructure indicating a close phylogenetic relationship, consistent with the early divergence of P. antarcticus within the Vacatina (i.e., Robusta) clade, estimated to have occurred in the Mesozoic (ca. 116 Mya). Scleractinian corals thus join the group of marine organisms capable of forming bimineralic structures, which requires a highly controlled biomineralization mechanism; this capability dates back at least 100 My. Due to its relatively prolonged isolation, the Southern Ocean stands out as a repository for extant marine organisms with ancient traits.


Subject(s)
Animal Shells/metabolism , Anthozoa/metabolism , Calcification, Physiologic/genetics , Calcium Carbonate/metabolism , Animal Shells/anatomy & histology , Animal Shells/chemistry , Animals , Anthozoa/anatomy & histology , Anthozoa/classification , Anthozoa/genetics , Biological Evolution , Calcium Carbonate/chemistry , Fossils , Phylogeny
7.
Nature ; 574(7780): 663-666, 2019 10.
Article in English | MEDLINE | ID: mdl-31666720

ABSTRACT

Over the past eight hundred thousand years, glacial-interglacial cycles oscillated with a period of one hundred thousand years ('100k world'1). Ice core and ocean sediment data have shown that atmospheric carbon dioxide, Antarctic temperature, deep ocean temperature, and global ice volume correlated strongly with each other in the 100k world2-6. Between about 2.8 and 1.2 million years ago, glacial cycles were smaller in magnitude and shorter in duration ('40k world'7). Proxy data from deep-sea sediments suggest that the variability of atmospheric carbon dioxide in the 40k world was also lower than in the 100k world8-10, but we do not have direct observations of atmospheric greenhouse gases from this period. Here we report the recovery of stratigraphically discontinuous ice more than two million years old from the Allan Hills Blue Ice Area, East Antarctica. Concentrations of carbon dioxide and methane in ice core samples older than two million years have been altered by respiration, but some younger samples are pristine. The recovered ice cores extend direct observations of atmospheric carbon dioxide, methane, and Antarctic temperature (based on the deuterium/hydrogen isotope ratio δDice, a proxy for regional temperature) into the 40k world. All climate properties before eight hundred thousand years ago fall within the envelope of observations from continuous deep Antarctic ice cores that characterize the 100k world. However, the lowest measured carbon dioxide and methane concentrations and Antarctic temperature in the 40k world are well above glacial values from the past eight hundred thousand years. Our results confirm that the amplitudes of glacial-interglacial variations in atmospheric greenhouse gases and Antarctic climate were reduced in the 40k world, and that the transition from the 40k to the 100k world was accompanied by a decline in minimum carbon dioxide concentrations during glacial maxima.

8.
Science ; 364(6438): 386-389, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31023923

ABSTRACT

The million-year variability of the marine nitrogen cycle is poorly understood. Before 57 million years (Ma) ago, the 15N/14N ratio (δ15N) of foraminifera shell-bound organic matter from three sediment cores was high, indicating expanded water column suboxia and denitrification. Between 57 and 50 Ma ago, δ15N declined by 13 to 16 per mil in the North Pacific and by 3 to 8 per mil in the Atlantic. The decline preceded global cooling and appears to have coincided with the early stages of the Asia-India collision. Warm, salty intermediate-depth water forming along the Tethys Sea margins may have caused the expanded suboxia, ending with the collision. From 50 to 35 Ma ago, δ15N was lower than modern values, suggesting widespread sedimentary denitrification on broad continental shelves. δ15N rose at 35 Ma ago, as ice sheets grew, sea level fell, and continental shelves narrowed.


Subject(s)
Nitrogen Cycle , Oceans and Seas , Oxygen/metabolism , Seawater/chemistry , Anaerobiosis , Geologic Sediments/chemistry , Nitrogen Isotopes/analysis
9.
Nat Commun ; 8(1): 844, 2017 10 10.
Article in English | MEDLINE | ID: mdl-29018196

ABSTRACT

Authigenic clay minerals formed on or in the seafloor occur in every type of marine sediment. They are recognized to be a major sink of many elements in the ocean but are difficult to study directly due to dilution by detrital clay minerals. The extremely low dust fluxes and marine sedimentation rates in the South Pacific Gyre (SPG) provide a unique opportunity to examine relatively undiluted authigenic clay. Here, using Mg isotopes and element concentrations combined with multivariate statistical modeling, we fingerprint and quantify the abundance of authigenic clay within SPG sediment. Key reactants include volcanic ash (source of reactive aluminium) and reactive biogenic silica on or shallowly buried within the seafloor. Our results, together with previous studies, suggest that global reorganizations of biogenic silica burial over the Cenozoic reduced marine authigenic clay formation, contributing to the rise in seawater Mg/Ca and decline in atmospheric CO2 over the past 50 million years.Reverse weathering reactions on or in the seafloor are a major sink of many elements and alkalinity in seawater. Here, the authors show how reduced rates of reverse weathering may be responsible for global cooling and increased seawater Mg/Ca over the past 50 million years.

10.
Proc Natl Acad Sci U S A ; 112(22): 6887-91, 2015 Jun 02.
Article in English | MEDLINE | ID: mdl-25964367

ABSTRACT

Here, we present direct measurements of atmospheric composition and Antarctic climate from the mid-Pleistocene (∼1 Ma) from ice cores drilled in the Allan Hills blue ice area, Antarctica. The 1-Ma ice is dated from the deficit in (40)Ar relative to the modern atmosphere and is present as a stratigraphically disturbed 12-m section at the base of a 126-m ice core. The 1-Ma ice appears to represent most of the amplitude of contemporaneous climate cycles and CO2 and CH4 concentrations in the ice range from 221 to 277 ppm and 411 to 569 parts per billion (ppb), respectively. These concentrations, together with measured δD of the ice, are at the warm end of the field for glacial-interglacial cycles of the last 800 ky and span only about one-half of the range. The highest CO2 values in the 1-Ma ice fall within the range of interglacial values of the last 400 ka but are up to 7 ppm higher than any interglacial values between 450 and 800 ka. The lowest CO2 values are 30 ppm higher than during any glacial period between 450 and 800 ka. This study shows that the coupling of Antarctic temperature and atmospheric CO2 extended into the mid-Pleistocene and demonstrates the feasibility of discontinuously extending the current ice core record beyond 800 ka by shallow coring in Antarctic blue ice areas.

11.
Science ; 339(6119): 540-3, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23372007

ABSTRACT

We present a framework for interpreting the carbon isotopic composition of sedimentary rocks, which in turn requires a fundamental reinterpretation of the carbon cycle and redox budgets over Earth's history. We propose that authigenic carbonate, produced in sediment pore fluids during early diagenesis, has played a major role in the carbon cycle in the past. This sink constitutes a minor component of the carbon isotope mass balance under the modern, high levels of atmospheric oxygen but was much larger in times of low atmospheric O(2) or widespread marine anoxia. Waxing and waning of a global authigenic carbonate sink helps to explain extreme carbon isotope variations in the Proterozoic, Paleozoic, and Triassic.


Subject(s)
Carbon Cycle , Carbon Isotopes/analysis , Carbonates/chemistry , Geologic Sediments/chemistry , Anaerobiosis , Atmosphere/chemistry , Methane/chemistry , Oxidation-Reduction , Oxygen/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...