Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
PLoS One ; 17(6): e0268660, 2022.
Article in English | MEDLINE | ID: mdl-35666730

ABSTRACT

Natural silks crafted by spiders comprise some of the most versatile materials known. Artificial silks-based on the sequences of their natural brethren-replicate some desirable biophysical properties and are increasingly utilized in commercial and medical applications today. To characterize the repertoire of protein sequences giving silks their biophysical properties and to determine the set of expressed genes across each unique silk gland contributing to the formation of natural silks, we report here draft genomic and transcriptomic assemblies of Darwin's bark spider, Caerostris darwini, an orb-weaving spider whose dragline is one of the toughest known biomaterials on Earth. We identify at least 31 putative spidroin genes, with expansion of multiple spidroin gene classes relative to the golden orb-weaver, Trichonephila clavipes. We observed substantial sharing of spidroin repetitive sequence motifs between species as well as new motifs unique to C. darwini. Comparative gene expression analyses across six silk gland isolates in females plus a composite isolate of all silk glands in males demonstrated gland and sex-specific expression of spidroins, facilitating putative assignment of novel spidroin genes to classes. Broad expression of spidroins across silk gland types suggests that silks emanating from a given gland represent composite materials to a greater extent than previously appreciated. We hypothesize that the extraordinary toughness of C. darwini major ampullate dragline silk may relate to the unique protein composition of major ampullate spidroins, combined with the relatively high expression of stretchy flagelliform spidroins whose union into a single fiber may be aided by novel motifs and cassettes that act as molecule-binding helices. Our assemblies extend the catalog of sequences and sets of expressed genes that confer the unique biophysical properties observed in natural silks.


Subject(s)
Fibroins , Spiders , Animals , Female , Fibroins/genetics , Fibroins/metabolism , Male , Plant Bark/metabolism , Silk/chemistry , Transcriptome
2.
Nat Genet ; 49(6): 895-903, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28459453

ABSTRACT

Spider silks are the toughest known biological materials, yet are lightweight and virtually invisible to the human immune system, and they thus have revolutionary potential for medicine and industry. Spider silks are largely composed of spidroins, a unique family of structural proteins. To investigate spidroin genes systematically, we constructed the first genome of an orb-weaving spider: the golden orb-weaver (Nephila clavipes), which builds large webs using an extensive repertoire of silks with diverse physical properties. We cataloged 28 Nephila spidroins, representing all known orb-weaver spidroin types, and identified 394 repeated coding motif variants and higher-order repetitive cassette structures unique to specific spidroins. Characterization of spidroin expression in distinct silk gland types indicates that glands can express multiple spidroin types. We find evidence of an alternatively spliced spidroin, a spidroin expressed only in venom glands, evolutionary mechanisms for spidroin diversification, and non-spidroin genes with expression patterns that suggest roles in silk production.


Subject(s)
Fibroins/genetics , Genome , Spiders/genetics , Alternative Splicing , Animals , Evolution, Molecular , Exocrine Glands/physiology , Female , Gene Expression , Phylogeny , Polymorphism, Genetic , Repetitive Sequences, Nucleic Acid , Silk/genetics , Spiders/anatomy & histology
3.
Int J Biol Macromol ; 40(3): 201-16, 2007 Feb 20.
Article in English | MEDLINE | ID: mdl-16982088

ABSTRACT

Spider silk proteins and their genes are very attractive to researchers in a wide range of disciplines because they permit linking many levels of organization. However, hypotheses of silk gene evolution have been built primarily upon single sequences of each gene each species, and little is known about allelic variation within a species. Silk genes are known for their repeat structure with high levels of homogenization of nucleotide and amino acid sequence among repeated units. One common explanation for this homogeneity is gene convergence. To test this model, we sequenced multiple alleles of one intron-exon segment from the Flag gene from four populations of the spider Nephila clavipes and compared the new sequences to a published sequence. Our analysis revealed very high levels of heterozygosity in this gene, with no pattern of population differentiation. There was no evidence of gene convergence within any of these alleles, with high levels of nucleotide and amino acid substitution among the repeating motifs. Our data suggest that minimally, there is relaxed selection on mutations in this gene and that there may actually be positive selection for heterozygosity.


Subject(s)
Alleles , Mutation , Proteins/genetics , Silk/genetics , Spiders/genetics , Amino Acid Motifs/genetics , Animals , Heterozygote
4.
Evolution ; 50(2): 573-582, 1996 Apr.
Article in English | MEDLINE | ID: mdl-28568949

ABSTRACT

To investigate the consequences of canalization and plasticity in arthropod developmental pathways, we developed a model that predicts eight possible combinations among three larval developmental parameters. From the descriptions of insect and spider postembryonic development, it is apparent that not all aspects of juvenile development are plastic and that species differ in which traits are plastic. Most strikingly, only four of the possible eight combinations of canalized and plastic parameters have been found in nature. Using this model, we show that the identity of the canalized developmental parameters and the degree of genetic variation in the value at which a given parameter is fixed have important implications for the ecology and evolution of complex life cycles.

SELECTION OF CITATIONS
SEARCH DETAIL