Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nat Ecol Evol ; 8(5): 888-900, 2024 May.
Article in English | MEDLINE | ID: mdl-38409318

ABSTRACT

Forecasting the risks of climate change for species and ecosystems is necessary for developing targeted conservation strategies. Previous risk assessments mapped the exposure of the global land surface to changes in climate. However, this procedure is unlikely to robustly identify priority areas for conservation actions because nonlinear physiological responses and colimitation processes ensure that ecological changes will not map perfectly to the forecast climatic changes. Here, we combine ecophysiological growth models of 135,153 vascular plant species and plant growth-form information to transform ambient and future climatologies into phytoclimates, which describe the ability of climates to support the plant growth forms that characterize terrestrial ecosystems. We forecast that 33% to 68% of the global land surface will experience a significant change in phytoclimate by 2070 under representative concentration pathways RCP 2.6 and RCP 8.5, respectively. Phytoclimates without present-day analogue are forecast to emerge on 0.3-2.2% of the land surface and 0.1-1.3% of currently realized phytoclimates are forecast to disappear. Notably, the geographic pattern of change, disappearance and novelty of phytoclimates differs markedly from the pattern of analogous trends in climates detected by previous studies, thereby defining new priorities for conservation actions and highlighting the limits of using untransformed climate change exposure indices in ecological risk assessments. Our findings suggest that a profound transformation of the biosphere is underway and emphasize the need for a timely adaptation of biodiversity management practices.


Subject(s)
Climate Change , Ecosystem , Conservation of Natural Resources , Risk Assessment , Forecasting , Plants , Models, Biological , Plant Development
2.
New Phytol ; 241(6): 2379-2394, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38245858

ABSTRACT

Increasing rainfall variability is widely expected under future climate change scenarios. How will savanna trees and grasses be affected by growing season dry spells and altered seasonality and how tightly coupled are tree-grass phenologies with rainfall? We measured tree and grass responses to growing season dry spells and dry season rainfall. We also tested whether the phenologies of 17 deciduous woody species and the Soil Adjusted Vegetation Index of grasses were related to rainfall between 2019 and 2023. Tree and grass growth was significantly reduced during growing season dry spells. Tree growth was strongly related to growing season soil water potentials and limited to the wet season. Grasses can rapidly recover after growing season dry spells and grass evapotranspiration was significantly related to soil water potentials in both the wet and dry seasons. Tree leaf flushing commenced before the rainfall onset date with little subsequent leaf flushing. Grasses grew when moisture became available regardless of season. Our findings suggest that increased dry spell length and frequency in the growing season may slow down tree growth in some savannas, which together with longer growing seasons may allow grasses an advantage over C3 plants that are advantaged by rising CO2 levels.


Subject(s)
Grassland , Poaceae , Poaceae/physiology , Ecosystem , Trees/physiology , Soil , Seasons , Water
3.
Science ; 380(6649): 1038-1042, 2023 06 09.
Article in English | MEDLINE | ID: mdl-37289873

ABSTRACT

One of the foundational premises of ecology is that climate determines ecosystems. This has been challenged by alternative ecosystem state models, which illustrate that internal ecosystem dynamics acting on the initial ecosystem state can overwhelm the influence of climate, and by observations suggesting that climate cannot reliably discriminate forest and savanna ecosystem types. Using a novel phytoclimatic transform, which estimates the ability of climate to support different types of plants, we show that climatic suitability for evergreen trees and C4 grasses are sufficient to discriminate between forest and savanna in Africa. Our findings reassert the dominant influence of climate on ecosystems and suggest that the role of feedbacks causing alternative ecosystem states is less prevalent than has been suggested.


Subject(s)
Climate , Ecosystem , Forests , Africa , Plants , Trees
4.
Ecol Evol ; 11(19): 13613-13617, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34646495

ABSTRACT

Here, we respond to Booth's criticism of our paper, "Predictive ability of a process-based versus a correlative species distribution model." Booth argues that our usage of the MaxEnt model was flawed and that the conclusions of our paper are by implication flawed. We respond by clarifying that the error Booth implies we made was not made in our analysis, and we repeat statements from the original manuscript which anticipated such criticisms. In addition, we illustrate that using BIOCLIM variables in a MaxEnt analysis as recommended by Booth does not change the conclusions of the original analysis. That is, high performance in the training data domain did not equate to reliable predictions in novel data domains, and the process model transferred into novel data domains better than the correlative model did. We conclude by discussing a hidden implication of our study, namely, that process-based SDMs negate the need for BIOCLIM-type variables and therefore reframe the variable selection problem in species distribution modeling.

5.
New Phytol ; 230(4): 1653-1664, 2021 05.
Article in English | MEDLINE | ID: mdl-33533483

ABSTRACT

A flexible use of the crassulacean acid metabolism (CAM) has been hypothesised to represent an intermediate stage along a C3 to full CAM evolutionary continuum, when relative contributions of C3 vs CAM metabolism are co-determined by evolutionary history and prevailing environmental constraints. However, evidence for such eco-evolutionary interdependencies is lacking. We studied these interdependencies for the leaf-succulent genus Drosanthemum (Aizoaceae, Southern African Succulent Karoo) by testing for relationships between leaf δ13 C diagnostic for CAM dependence (i.e. contribution of C3 and CAM to net carbon gain), and climatic variables related to temperature and precipitation and their temporal variation. We further quantified the effects of shared phylogenetic ancestry on CAM dependence and its relation to climate. CAM dependence is predicted by rainfall and its temporal variation, with high predictive power of rainfall constancy (temporal entropy). The predictive power of rainfall seasonality and temperature-related variables was negligible. Evolutionary history of the tested clades significantly affected the relationship between rainfall constancy and CAM dependence. We argue that higher CAM dependence might provide an adaptive advantage in increasingly unpredictable rainfall environments when the anatomic exaptation (succulence) is already present. These observations might shed light on the evolution of full CAM.


Subject(s)
Crassulacean Acid Metabolism , Photosynthesis , Carbon Dioxide , Phylogeny , Plant Leaves
6.
Glob Chang Biol ; 27(2): 340-358, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33037718

ABSTRACT

Anthropogenic climate change is expected to impact ecosystem structure, biodiversity and ecosystem services in Africa profoundly. We used the adaptive Dynamic Global Vegetation Model (aDGVM), which was originally developed and tested for Africa, to quantify sources of uncertainties in simulated African potential natural vegetation towards the end of the 21st century. We forced the aDGVM with regionally downscaled high-resolution climate scenarios based on an ensemble of six general circulation models (GCMs) under two representative concentration pathways (RCPs 4.5 and 8.5). Our study assessed the direct effects of climate change and elevated CO2 on vegetation change and its plant-physiological drivers. Total increase in carbon in aboveground biomass in Africa until the end of the century was between 18% to 43% (RCP4.5) and 37% to 61% (RCP8.5) and was associated with woody encroachment into grasslands and increased woody cover in savannas. When direct effects of CO2 on plants were omitted, woody encroachment was muted and carbon in aboveground vegetation changed between -8 to 11% (RCP 4.5) and -22 to -6% (RCP8.5). Simulated biome changes lacked consistent large-scale geographical patterns of change across scenarios. In Ethiopia and the Sahara/Sahel transition zone, the biome changes forecast by the aDGVM were consistent across GCMs and RCPs. Direct effects from elevated CO2 were associated with substantial increases in water use efficiency, primarily driven by photosynthesis enhancement, which may relieve soil moisture limitations to plant productivity. At the ecosystem level, interactions between fire and woody plant demography further promoted woody encroachment. We conclude that substantial future biome changes due to climate and CO2 changes are likely across Africa. Because of the large uncertainties in future projections, adaptation strategies must be highly flexible. Focused research on CO2 effects, and improved model representations of these effects will be necessary to reduce these uncertainties.


Subject(s)
Climate Change , Ecosystem , Africa , Africa, Northern , Biodiversity
7.
Ecol Evol ; 10(20): 11043-11054, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33144947

ABSTRACT

Species distribution modeling is a widely used tool in many branches of ecology and evolution. Evaluations of the transferability of species distribution models-their ability to predict the distribution of species in independent data domains-are, however, rare. In this study, we contrast the transferability of a process-based and a correlative species distribution model. Our case study uses 664 Australian eucalypt and acacia species. We estimate models for these species using data from their native Australia and then assess whether these models can predict the adventive range of these species. We find that the correlative model-MaxEnt-has a superior ability to describe the data in the training data domain (Australia) and that the process-based model-TTR-SDM-has a superior ability to predict the distribution of the study species outside of Australia. The implication of this analysis, that process-based models may be more appropriate than correlative models when making projections outside of the domain of the training data, needs to be tested in other case studies.

8.
Ecol Evol ; 10(12): 6163-6182, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607221

ABSTRACT

Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales. Our framework describes the diversification rate (d) as a function of the abiotic environment (a), the biotic environment (b), and clade-specific phenotypes or traits (c); thus, d ~ a,b,c. We refer to the four components (a-d) and their interactions collectively as the "Evolutionary Arena." We outline analytical approaches to this framework and present a case study on conifers, for which we parameterize the general model. We also discuss three conceptual examples: the Lupinus radiation in the Andes in the context of emerging ecological opportunity and fluctuating connectivity due to climatic oscillations; oceanic island radiations in the context of island formation and erosion; and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results of the conifer case study are consistent with the long-standing scenario that low competition and high rates of niche evolution promote diversification. The conceptual examples illustrate how using the synthetic Evolutionary Arena framework helps to identify and structure future directions for research on evolutionary radiations. In this way, the Evolutionary Arena framework promotes a more general understanding of variation in evolutionary rates by making quantitative results comparable between case studies, thereby allowing new syntheses of evolutionary and ecological processes to emerge.

9.
New Phytol ; 227(5): 1294-1306, 2020 09.
Article in English | MEDLINE | ID: mdl-32255502

ABSTRACT

Biomes are constructs for organising knowledge on the structure and functioning of the world's ecosystems, and serve as useful units for monitoring how the biosphere responds to anthropogenic drivers, including climate change. The current practice of delimiting biomes relies on expert knowledge. Recent studies have questioned the value of such biome maps for comparative ecology and global-change research, partly due to their subjective origin. Here we propose a flexible method for developing biome maps objectively. The method uses range modelling of several thousands of plant species to reveal spatial attractors for different growth-form assemblages that define biomes. The workflow is illustrated using distribution data from 23 500 African plant species. In an example application, we create a biome map for Africa and use the fitted species models to project biome shifts. In a second example, we map gradients of growth-form suitability that can be used to identify sites for comparative ecology. This method provides a flexible framework that (1) allows a range of biome types to be defined according to user needs and (2) enables projections of biome changes that emerge purely from the individualistic responses of plant species to environmental changes.


Subject(s)
Ecology , Ecosystem , Africa , Climate Change , Plants
10.
Nat Commun ; 9(1): 4258, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30323199

ABSTRACT

There are two prominent and competing hypotheses that disagree about the effect of competition on diversification processes. The first, the bounded hypothesis, suggests that species diversity is limited (bounded) by competition between species for finite ecological niche space. The second, the unbounded hypothesis, proposes that innovations associated with evolution render competition unimportant over macroevolutionary timescales. Here we use phylogenetically structured niche modelling to show that processes consistent with both of these diversification models drive species accumulation in conifers. In agreement with the bounded hypothesis, niche competition constrained diversification, and in line with the unbounded hypothesis, niche evolution and partitioning promoted diversification. We then analyse niche traits to show that these diversification enhancing and inhibiting processes can occur simultaneously on different niche dimensions. Together these results suggest a new hypothesis for lineage diversification based on the multi-dimensional nature of ecological niches that can accommodate both bounded and unbounded evolutionary processes.

11.
Funct Plant Biol ; 45(9): 935-944, 2018 Aug.
Article in English | MEDLINE | ID: mdl-32291057

ABSTRACT

C3 plants can increase nutrient uptake by increasing transpiration, which promotes the flow of water with dissolved nutrients towards the roots. However, it is not clear if this mechanism of nutrient acquisition, termed 'mass flow', also operates in C4 plants. This is an important question, as differences in mass flow capacity may affect competitive interactions between C3 and C4 species. To test if mass flow can be induced in C4 species, we conducted an experiment in a semiarid seasonal savanna in South Africa. We grew six C4 grasses in nutrient-poor sand and supplied no nutrients, nutrients to the roots or nutrients spatially separated from the roots. We measured the rates of photosynthesis and transpiration, water-use efficiency (WUE), nitrogen gain and biomass. For all species biomass, N gain, photosynthesis and transpiration were lowest in the treatment without any nutrient additions. Responses to different nutrient positioning varied among species from no effect on N gain to a 50% reduction when nutrients were spatially separated. The ability to access spatially separated nutrients showed a nonsignificant positive relationship with both the response of transpiration and the response of WUE to spatial nutrient separation. This indicates that nutrient acquisition is not regulated by decreasing WUE in C4 grasses. Overall, our study suggests that under elevated CO2, when evaporative demand is lower, C4 species may be at a competitive disadvantage to C3 species when it comes to nutrient acquisition.

12.
Glob Chang Biol ; 23(1): 177-190, 2017 01.
Article in English | MEDLINE | ID: mdl-27381364

ABSTRACT

Remote sensing is revolutionizing the way we study forests, and recent technological advances mean we are now able - for the first time - to identify and measure the crown dimensions of individual trees from airborne imagery. Yet to make full use of these data for quantifying forest carbon stocks and dynamics, a new generation of allometric tools which have tree height and crown size at their centre are needed. Here, we compile a global database of 108753 trees for which stem diameter, height and crown diameter have all been measured, including 2395 trees harvested to measure aboveground biomass. Using this database, we develop general allometric models for estimating both the diameter and aboveground biomass of trees from attributes which can be remotely sensed - specifically height and crown diameter. We show that tree height and crown diameter jointly quantify the aboveground biomass of individual trees and find that a single equation predicts stem diameter from these two variables across the world's forests. These new allometric models provide an intuitive way of integrating remote sensing imagery into large-scale forest monitoring programmes and will be of key importance for parameterizing the next generation of dynamic vegetation models.


Subject(s)
Carbon Cycle , Forests , Remote Sensing Technology , Biomass , Carbon , Trees
13.
Philos Trans R Soc Lond B Biol Sci ; 371(1703)2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27502376

ABSTRACT

The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)-and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'.


Subject(s)
Carbon Dioxide/analysis , Climate Change , Grassland , Africa , Australia , Geographic Mapping , Models, Biological , South America
14.
Glob Chang Biol ; 22(11): 3583-3593, 2016 11.
Article in English | MEDLINE | ID: mdl-27207728

ABSTRACT

Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function.


Subject(s)
Ecosystem , Models, Theoretical , Climate , Seasons
15.
Biol Lett ; 11(8)2015 Aug.
Article in English | MEDLINE | ID: mdl-26268994

ABSTRACT

Remote sensing studies suggest that savannahs are transforming into more tree-dominated states; however, progressive nitrogen limitation could potentially retard this putatively CO2-driven invasion. We analysed controls on nitrogen mineralization rates in savannah by manipulating rainfall and the cover of grass and tree elements against the backdrop of the seasonal temperature and rainfall variation. We found that the seasonal pattern of nitrogen mineralization was strongly influenced by rainfall, and that manipulative increases in rainfall could boost mineralization rates. Additionally, mineralization rates were considerably higher on plots with grasses and lower on plots with trees. Our findings suggest that shifting a savannah from a grass to a tree-dominated state can substantially reduce nitrogen mineralization rates, thereby potentially creating a negative feedback on the CO2-induced invasion of savannahs by trees.


Subject(s)
Nitrogen Cycle , Nitrogen/chemistry , Poaceae/physiology , Trees/physiology , Ecosystem , Feedback , Grassland , Rain , Seasons , Soil/chemistry , South Africa
16.
Oecologia ; 178(4): 1125-35, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25790804

ABSTRACT

Perennial grasses are a dominant component of grasslands, and provide important ecosystem services. However, most knowledge of grasslands' functioning and production comes from plot-level studies, and drivers of individual-level production remain poorly explored. Extrapolation from existing experiments is hampered by the fact that these are mostly concentrated on even-aged cohorts, and/or on the early stages of a plant's life cycle. Here we explored how local density regulates individual production in mono-specific natural grassland, focusing on adult individuals of a perennial savanna grass (Stipagrostis uniplumis). We found individual production to increase with individuals' size, but to decrease with neighbour abundance. A metric of neighbour abundance that considered size was superior to a metric based solely on the number of individuals. This finding is particularly important for studying competitive effects in natural populations, where plants are normally not even-sized. The inferred competition kernel, i.e. the function describing how competitive strength varies with spatial distance from a target plant, was hump-shaped, indicating strongest intraspecific competition at intermediate distances (10-30 cm). The spatial signature of competitive effects changed with time since fire; peak effects moved successively away from the target plant. Our results suggest that inferred competition kernels of long-lived plant populations may have shapes that differ from exponential or sigmoidal decreases. More generally, results underline that competition among neighbouring plants is dynamic. Studies that address density-dependent and density-independent (fire-related) population dynamics of perennial grasses in their fire-prone environment may thus shed new light on the functioning and production of grasslands.


Subject(s)
Grassland , Poaceae/growth & development , Ecosystem , Fires , Humans , Namibia , Plants , Population Dynamics
17.
New Phytol ; 205(3): 1211-1226, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25388673

ABSTRACT

Tropical savannas cover a large proportion of the Earth's land surface and many people are dependent on the ecosystem services that savannas supply. Their sustainable management is crucial. Owing to the complexity of savanna vegetation dynamics, climate change and land use impacts on savannas are highly uncertain. We used a dynamic vegetation model, the adaptive dynamic global vegetation model (aDGVM), to project how climate change and fire management might influence future vegetation in northern Australian savannas. Under future climate conditions, vegetation can store more carbon than under ambient conditions. Changes in rainfall seasonality influence future carbon storage but do not turn vegetation into a carbon source, suggesting that CO2 fertilization is the main driver of vegetation change. The application of prescribed fires with varying return intervals and burning season influences vegetation and fire impacts. Carbon sequestration is maximized with early dry season fires and long fire return intervals, while grass productivity is maximized with late dry season fires and intermediate fire return intervals. The study has implications for management policy across Australian savannas because it identifies how fire management strategies may influence grazing yield, carbon sequestration and greenhouse gas emissions. This knowledge is crucial to maintaining important ecosystem services of Australian savannas.


Subject(s)
Climate Change , Conservation of Natural Resources , Fires , Grassland , Africa , Australia , Biomass , Computer Simulation , Models, Theoretical , Plant Transpiration/physiology , Rivers , Time Factors , Trees/anatomy & histology
18.
Proc Natl Acad Sci U S A ; 111(29): 10610-4, 2014 Jul 22.
Article in English | MEDLINE | ID: mdl-24989502

ABSTRACT

Invasive species cost the global economy billions of dollars each year, but ecologists have struggled to predict the risk of an introduced species naturalizing and invading. Although carefully designed experiments are needed to fully elucidate what makes some species invasive, much can be learned from unintentional experiments involving the introduction of species beyond their native ranges. Here, we assess invasion risk by linking a physiologically based species distribution model with data on the invasive success of 749 Australian acacia and eucalypt tree species that have, over more than a century, been introduced around the world. The model correctly predicts 92% of occurrences observed outside of Australia from an independent dataset. We found that invasiveness is positively associated with the projection of physiological niche volume in geographic space, thereby illustrating that species tolerant of a broader range of environmental conditions are more likely to be invasive. Species achieve this broader tolerance in different ways, meaning that the traits that define invasive success are context-specific. Hence, our study reconciles studies that have failed to identify the traits that define invasive success with the urgent and pragmatic need to predict invasive success.


Subject(s)
Acacia/physiology , Ecosystem , Eucalyptus/physiology , Introduced Species , Australia , Species Specificity
19.
Science ; 343(6170): 548-52, 2014 Jan 31.
Article in English | MEDLINE | ID: mdl-24482480

ABSTRACT

Ecologists have long sought to understand the factors controlling the structure of savanna vegetation. Using data from 2154 sites in savannas across Africa, Australia, and South America, we found that increasing moisture availability drives increases in fire and tree basal area, whereas fire reduces tree basal area. However, among continents, the magnitude of these effects varied substantially, so that a single model cannot adequately represent savanna woody biomass across these regions. Historical and environmental differences drive the regional variation in the functional relationships between woody vegetation, fire, and climate. These same differences will determine the regional responses of vegetation to future climates, with implications for global carbon stocks.


Subject(s)
Climate , Ecosystem , Fires , Trees , Africa , Australia , Humidity , Models, Biological , South America
20.
New Phytol ; 201(3): 908-915, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24400901

ABSTRACT

The dominant vegetation over much of the global land surface is not predetermined by contemporary climate, but also influenced by past environmental conditions. This confounds attempts to predict current and future biome distributions, because even a perfect model would project multiple possible biomes without knowledge of the historical vegetation state. Here we compare the distribution of tree- and grass-dominated biomes across Africa simulated using a dynamic global vegetation model (DGVM). We explicitly evaluate where and under what conditions multiple stable biome states are possible for current and projected future climates. Our simulation results show that multiple stable biomes states are possible for vast areas of tropical and subtropical Africa under current conditions. Widespread loss of the potential for multiple stable biomes states is projected in the 21st Century, driven by increasing atmospheric CO2 . Many sites where currently both tree-dominated and grass-dominated biomes are possible become deterministically tree-dominated. Regions with multiple stable biome states are widespread and require consideration when attempting to predict future vegetation changes. Testing for behaviour characteristic of systems with multiple stable equilibria, such as hysteresis and dependence on historical conditions, and the resulting uncertainty in simulated vegetation, will lead to improved projections of global change impacts.


Subject(s)
Atmosphere/chemistry , Biota , Carbon Dioxide/analysis , Africa , Computer Simulation , Poaceae/physiology , Rain , Time Factors , Trees/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...