Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 52(5): 2854-2862, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29384659

ABSTRACT

Although minerals are known to affect the environmental fate and transformation of heavy-metal ions, little is known about their interaction with the heavily exploited silver nanoparticles (AgNPs). Proposed here is a combination of hitherto under-utilized micro-Raman-based mapping and chemometric methods for imaging the distribution of AgNPs on various mineral surfaces and their molecular interaction mechanisms. The feasibility of the Raman-based imaging method was tested on two macro- and microsized mineral models, muscovite [KAl2(AlSi3O10)(OH)2] and corundum (α-Al2O3), under key environmental conditions (ionic strength and pH). Both AgNPs- and AgNPs+ were found to covalently attach to corundum (pHpzc = 9.1) through the formation of Ag-O-Al- bonds and thereby to potentially experience reduced environmental mobility. Because label-free Raman imaging showed no molecular interactions between AgNPs- and muscovite (pHpzc = 7.5), a label-enhanced Raman imaging approach was developed for mapping the scarce spatial distribution of AgNPs- on such mineral surfaces. Raman maps comprising of n = 625-961 spectra for each sample/control were rapidly analyzed in Vespucci, a free open-source software, and the results were confirmed via ICP-OES, AFM, and SEM-EDX. The proposed Raman-based imaging requires minimum to no sample preparation; is sensitive, noninvasive, cost-effective; and might be extended to other environmentally relevant systems.


Subject(s)
Metal Nanoparticles , Silver , Adsorption , Ions , Minerals
2.
Environ Sci Technol ; 49(16): 9733-41, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26214079

ABSTRACT

The adsorption of dissolved organic matter (DOM) to metal (oxy)hydroxide mineral surfaces is a critical step for C sequestration in soils. Although equilibrium studies have described some of the factors controlling this process, the molecular-scale description of the adsorption process has been more limited. Chemical force spectroscopy revealed differing adhesion strengths of DOM extracted from three soils and a reference peat soil material to an iron (oxy)hydroxide mineral surface. The DOM was characterized using ultrahigh-resolution negative ion mode electrospray ionization Fourier Transform ion cyclotron resonance mass spectrometry. The results indicate that carboxyl-rich aromatic and N-containing aliphatic molecules of DOM are correlated with high adhesion forces. Increasing molecular mass was shown to decrease the adhesion force between the mineral surface and the DOM. Kendrick mass defect analysis suggests that mechanisms involving two carboxyl groups result in the most stable bond to the mineral surface. We conceptualize these results using a layer-by-layer "onion" model of organic matter stabilization on soil mineral surfaces.


Subject(s)
Hydroxides/chemistry , Iron/chemistry , Minerals/chemistry , Models, Chemical , Organic Chemicals/chemistry , Spectrum Analysis/methods , Adsorption , Mass Spectrometry , Microscopy, Atomic Force , Molecular Weight
3.
Environ Sci Technol ; 47(1): 110-8, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-22681699

ABSTRACT

Elucidating dissolution kinetics and mechanisms at carbonate mineral-water interfaces is essential to many environmental and geochemical processes, including geologic CO(2) sequestration in deep aquifers. In the present work, effects of background electrolytes on dolomite (CaMg(CO(3))(2)) reactivity were investigated by measuring step dissolution rates using in situ hydrothermal atomic force microscopy (HAFM) at 90 °C. Cleaved surfaces of dolomite were exposed to sodium chloride and tetramethylammonium chloride (TMACl) aqueous solutions with ionic strengths (I) ranging from 0 to 0.77 m at pH 4 and pH 9. HAFM results demonstrated that dolomite step retreat rates increased with increasing solution ionic strength and decreasing pH. Comparison of [481] and [441] steps revealed that the anisotropy of [481] and [441] step speeds became significant as solution ionic strength increased, with NaCl exerting more pronounced effects than TMACl for the same I. To interpret the different trends observed for NaCl and TMACl, a dissolution mechanism involving orientation-dependent ion adsorption and consequent edge free energy changes is proposed.


Subject(s)
Calcium Carbonate/chemistry , Magnesium/chemistry , Carbon Sequestration , Kinetics , Microscopy, Atomic Force , Osmolar Concentration , Quaternary Ammonium Compounds/chemistry , Sodium Chloride/chemistry , Solubility , Water/chemistry
4.
Langmuir ; 26(7): 4769-75, 2010 Apr 06.
Article in English | MEDLINE | ID: mdl-20148544

ABSTRACT

A self-limited monolayer grown on dolomite (CaMg(CO(3))(2)), showing distinct friction contrast with the substrate as reported earlier using lateral force microscopy, was investigated with in situ atomic force microscopy (AFM) adhesion mapping and force-modulation techniques. Force-modulation microscopy revealed lower stiffness on a Ca-rich film in comparison to that on the dolomite surface. The friction contrast therefore results from a larger tip-surface contact area when the AFM probe is in contact with the Ca-rich film as opposed to the contact area with dolomite. The Ca-rich film also exhibited a slightly higher adhesion than did the dolomite substrate; however, the critical shear stresses for the two tip-surface contacts were indistinguishable. A comparative study with a Mg-rich film did not yield noticeable force modulation contrast, indicating similar surface stiffness of the film and the dolomite surface. The similarity in these stiffness quantities was further corroborated by friction-load data that demonstrated similar friction forces on the two surfaces. The previously reported film strain in the Ca-rich system is likely linked to the lower stiffness observed, with both of these properties related to the Ca/Mg composition of the film.

5.
Geochem Trans ; 10: 7, 2009 Jun 23.
Article in English | MEDLINE | ID: mdl-19549312

ABSTRACT

Lateral Force Microscopy (LFM) studies were carried out on cleaved calcite sections in contact with solutions supersaturated with respect to otavite (CdCO3) or calcite-otavite solid solutions (SS) as a means to examine the potential for future application of LFM as a nanometer-scale mineral surface composition mapping technique. Layer-by-layer growth of surface films took place either by step advancement or by a surface nucleation and step advancement mechanisms. Friction vs. applied load data acquired on the films and the calcite substrate were successfully fitted to the Johnson Kendall Roberts (JKR) model for single asperity contacts. Following this model, friction differences between film and substrate at low loads were dictated by differences in adhesion, whereas at higher load they reflect differences in contact shear strength. In most experiments at fixed load, the film showed higher friction than the calcite surface, but the friction-load dependence for the different surfaces revealed that at low loads (0-40 nN), a calcian otavite film has lower friction than calcite; a result that is contrary to earlier LFM reports of the same system. Multilayer films of calcian-otavite displayed increasing friction with film thickness, consistent with the expectation that the film surface composition will become increasingly Cd-rich with increasing thickness. Both load- and thickness-dependence trends support the hypothesis that the contact shear strength correlates with the hydration enthalpy of the surface ions, thereby imparting friction sensitivity in the LFM to mineral-water interface composition.

6.
Langmuir ; 23(17): 8909-15, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-17645356

ABSTRACT

The friction and lateral stiffness of the contact between an atomic force microscopy (AFM) probe tip and an atomically flat dolomite (104) surface were investigated in contact with two aqueous solutions that were in equilibrium and supersaturated with respect to dolomite, respectively. The two aqueous solutions yielded negligible differences in friction at the native dolomite-water interface. However, the growth of a Ca-rich film from the supersaturated solution, revealed by X-ray reflectivity measurements, altered the probe-dolomite contact region sufficiently to observe distinct friction forces on the native dolomite and the film-covered surface regions. Quantitative friction-load relationships demonstrated three physically distinct load regimes for applied loads up to 200 nN. Similar friction forces were observed on both surfaces below 50 nN load and above 100 nN load. The friction forces on the two surfaces diverged at intermediate loads. Quantitative measurements of dynamic friction forces at low load were consistent with the estimated energy necessary to dehydrate the surface ions, whereas differences in mechanical properties of the Ca-rich film and dolomite surfaces were evidently important above 50 nN load. Attempts to fit the quantitative stiffness-load data using a Hertzian contact mechanical model based on bulk material properties yielded physically unrealistic fitting coefficients, suggesting that the interfacial contact region must be explicitly considered in describing the static and dynamic contact mechanics of this and similar systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...