Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38915495

ABSTRACT

Inverted formin-2 (INF2) gene mutations are among the most common causes of genetic focal segmental glomerulosclerosis (FSGS) with or without Charcot-Marie-Tooth (CMT) disease. Recent studies suggest that INF2, through its effects on actin and microtubule arrangement, can regulate processes including vesicle trafficking, cell adhesion, mitochondrial calcium uptake, mitochondrial fission, and T-cell polarization. Despite roles for INF2 in multiple cellular processes, neither the human pathogenic R218Q INF2 point mutation nor the INF2 knock-out allele is sufficient to cause disease in mice. This discrepancy challenges our efforts to explain the disease mechanism, as the link between INF2-related processes, podocyte structure, disease inheritance pattern, and their clinical presentation remains enigmatic. Here, we compared the kidney responses to puromycin aminonucleoside (PAN) induced injury between R218Q INF2 point mutant knock-in and INF2 knock-out mouse models and show that R218Q INF2 mice are susceptible to developing proteinuria and FSGS. This contrasts with INF2 knock-out mice, which show only a minimal kidney phenotype. Co-localization and co-immunoprecipitation analysis of wild-type and mutant INF2 coupled with measurements of cellular actin content revealed that the R218Q INF2 point mutation confers a gain-of-function effect by altering the actin cytoskeleton, facilitated in part by alterations in INF2 localization. Differential analysis of RNA expression in PAN-stressed heterozygous R218Q INF2 point-mutant and heterozygous INF2 knock-out mouse glomeruli showed that the adhesion and mitochondria-related pathways were significantly enriched in the disease condition. Mouse podocytes with R218Q INF2, and an INF2-mutant human patient's kidney organoid-derived podocytes with an S186P INF2 mutation, recapitulate the defective adhesion and mitochondria phenotypes. These results link INF2-regulated cellular processes to the onset and progression of glomerular disease. Thus, our data demonstrate that gain-of-function mechanisms drive INF2-related FSGS and explain the autosomal dominant inheritance pattern of this disease.

2.
Nat Cell Biol ; 26(5): 731-744, 2024 May.
Article in English | MEDLINE | ID: mdl-38594588

ABSTRACT

Mitochondrial fission occurs in many cellular processes, but the regulation of fission is poorly understood. We show that long-chain acyl-coenzyme A (LCACA) activates two related mitochondrial fission proteins, MiD49 and MiD51, by inducing their oligomerization, which activates their ability to stimulate the DRP1 GTPase. The 1:1 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously identified nucleotide-binding pocket, and a point mutation in this pocket reduces LCACA binding and LCACA-induced oligomerization for MiD51. In cells, this LCACA binding mutant does not assemble into puncta on mitochondria or rescue MiD49/51 knockdown effects on mitochondrial length and DRP1 recruitment. Furthermore, cellular treatment with BSA-bound oleic acid, which causes increased LCACA, promotes mitochondrial fission in an MiD49/51-dependent manner. These results suggest that LCACA is an endogenous ligand for MiDs, inducing mitochondrial fission and providing a potential mechanism for fatty-acid-induced mitochondrial division. Finally, MiD49 or MiD51 oligomers synergize with Mff, but not with actin filaments, in DRP1 activation, suggesting distinct pathways for DRP1 activation.


Subject(s)
Acyl Coenzyme A , Dynamins , GTP Phosphohydrolases , Mitochondria , Mitochondrial Dynamics , Mitochondrial Proteins , Mitochondrial Dynamics/drug effects , Dynamins/metabolism , Dynamins/genetics , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/genetics , Acyl Coenzyme A/metabolism , Protein Multimerization , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Animals , Protein Binding , HeLa Cells , HEK293 Cells , Oleic Acid/pharmacology , Oleic Acid/metabolism , Membrane Proteins , Peptide Elongation Factors
3.
Mol Biol Cell ; 35(2): ar16, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38019609

ABSTRACT

Drp1 is a dynamin family GTPase required for mitochondrial and peroxisomal division. Oligomerization increases Drp1 GTPase activity through interactions between neighboring GTPase domains. In cells, Drp1 is regulated by several factors including Drp1 receptors, actin filaments, cardiolipin, and phosphorylation at two sites: S579 and S600. Commonly, phosphorylation of S579 is considered activating, while S600 phosphorylation is considered inhibiting. However, direct effects of phosphorylation on Drp1 GTPase activity have not been investigated in detail. Here, we compare effects of S579 and S600 phosphorylation on purified Drp1, using phosphomimetic mutants and in vitro phosphorylation. Both phosphomimetic mutants are shifted toward smaller oligomers. Both phosphomimetic mutations maintain basal GTPase activity, but eliminate GTPase stimulation by actin and decrease GTPase stimulation by cardiolipin, Mff, and MiD49. Phosphorylation of S579 by Erk2 produces similar effects. When mixed with wildtype Drp1, both S579D and S600D phosphomimetic mutants reduce the actin-stimulated GTPase activity of Drp1-WT. Conversely, a Drp1 mutant (K38A) lacking GTPase activity stimulates Drp1-WT GTPase activity under both basal and actin-stimulated conditions. These results suggest that the effect of S579 phosphorylation is not to activate Drp1 directly. In addition, our results suggest that nearest neighbor interactions within the Drp1 oligomer affect catalytic activity.


Subject(s)
Actins , Cardiolipins , Phosphorylation , Dynamins/metabolism , GTP Phosphohydrolases/metabolism , Mitochondrial Proteins/metabolism , Mitochondrial Dynamics/genetics
4.
bioRxiv ; 2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37645886

ABSTRACT

Drp1 is a dynamin family GTPase that is required for mitochondrial and peroxisomal division, in which it oligomerizes into a ring and constricts the underlying membrane in a GTP hydrolysis-dependent manner. Oligomerization increases Drp1 GTPase activity through interactions between neighboring GTPase domains. In cells, Drp1 is regulated by several factors including Drp1 receptors, actin filaments, cardiolipin, and phosphorylation at two sites: S579 and S600. Phosphorylation of S579 is widely regarded as activating, while S600 phosphorylation is commonly considered inhibiting. However, the direct effects of phosphorylation on Drp1 GTPase activity have not been investigated in detail. In this study, we compare the effects of S579 and S600 phosphorylation on purified Drp1, using phospho-mimetic mutants and in vitro phosphorylation. The oligomerization state of both phospho-mimetic mutants is shifted toward smaller oligomers. Both phospho-mimetic mutations maintain basal GTPase activity, but eliminate GTPase stimulation by actin and decrease GTPase stimulation by cardiolipin, Mff, and MiD49. Phosphorylation of S579 by Erk2 produces similar effects. When mixed with wild-type Drp1, both S579D and S600D phospho-mimetic mutants reduce the actin-stimulated GTPase activity of Drp1-WT. Conversely, a Drp1 mutant that lacks GTPase activity, the K38A mutant, stimulates Drp1-WT GTPase activity under both basal and actin-stimulated conditions, similar to previous results for dynamin-1. These results suggest that the effect of S579 phosphorylation is not to activate Drp1 directly, and likely requires additional factors for stimulation of mitochondrial fission in cells. In addition, our results suggest that nearest neighbor interactions within the Drp1 oligomer affect catalytic activity.

6.
Nat Rev Mol Cell Biol ; 24(9): 651-667, 2023 09.
Article in English | MEDLINE | ID: mdl-37277471

ABSTRACT

Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.


Subject(s)
Actins , Mitochondria , Actins/metabolism , Mitochondria/metabolism , Formins/metabolism , Myosins/metabolism , Endoplasmic Reticulum/metabolism
7.
Curr Biol ; 33(10): R380-R382, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37220723
8.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36982602

ABSTRACT

Cholesterol is a key component of all mammalian cell membranes. Disruptions in cholesterol metabolism have been observed in the context of various diseases, including neurodegenerative disorders such as Alzheimer's disease (AD). The genetic and pharmacological blockade of acyl-CoA:cholesterol acyltransferase 1/sterol O-acyltransferase 1 (ACAT1/SOAT1), a cholesterol storage enzyme found on the endoplasmic reticulum (ER) and enriched at the mitochondria-associated ER membrane (MAM), has been shown to reduce amyloid pathology and rescue cognitive deficits in mouse models of AD. Additionally, blocking ACAT1/SOAT1 activity stimulates autophagy and lysosomal biogenesis; however, the exact molecular connection between the ACAT1/SOAT1 blockade and these observed benefits remain unknown. Here, using biochemical fractionation techniques, we observe cholesterol accumulation at the MAM which leads to ACAT1/SOAT1 enrichment in this domain. MAM proteomics data suggests that ACAT1/SOAT1 inhibition strengthens the ER-mitochondria connection. Confocal and electron microscopy confirms that ACAT1/SOAT1 inhibition increases the number of ER-mitochondria contact sites and strengthens this connection by shortening the distance between these two organelles. This work demonstrates how directly manipulating local cholesterol levels at the MAM can alter inter-organellar contact sites and suggests that cholesterol buildup at the MAM is the impetus behind the therapeutic benefits of ACAT1/SOAT1 inhibition.


Subject(s)
Alzheimer Disease , Cholesterol , Animals , Mice , Alzheimer Disease/metabolism , Cholesterol/metabolism , Endoplasmic Reticulum/metabolism , Mammals/metabolism , Mitochondria/metabolism , Sterols/metabolism , Acetyl-CoA C-Acyltransferase/metabolism , Sterol O-Acyltransferase/metabolism
9.
Nat Commun ; 13(1): 6037, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229429

ABSTRACT

During early ischemic brain injury, glutamate receptor hyperactivation mediates neuronal death via osmotic cell swelling. Here we show that ischemia and excess NMDA receptor activation cause actin to rapidly and extensively reorganize within the somatodendritic compartment. Normally, F-actin is concentrated within dendritic spines. However, <5 min after bath-applied NMDA, F-actin depolymerizes within spines and polymerizes into stable filaments within the dendrite shaft and soma. A similar actinification occurs after experimental ischemia in culture, and photothrombotic stroke in mouse. Following transient NMDA incubation, actinification spontaneously reverses. Na+, Cl-, water, and Ca2+ influx, and spine F-actin depolymerization are all necessary, but not individually sufficient, for actinification, but combined they induce activation of the F-actin polymerization factor inverted formin-2 (INF2). Silencing of INF2 renders neurons vulnerable to cell death and INF2 overexpression is protective. Ischemia-induced dendritic actin reorganization is therefore an intrinsic pro-survival response that protects neurons from death induced by cell edema.


Subject(s)
Actins , N-Methylaspartate , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Dendritic Spines/metabolism , Formins , Ischemia/metabolism , Mice , N-Methylaspartate/metabolism , Neurons/metabolism , Receptors, Glutamate/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Water/metabolism
10.
J Cell Biol ; 221(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36102863

ABSTRACT

Mitochondrial damage represents a dramatic change in cellular homeostasis. One rapid response is perimitochondrial actin polymerization, termed acute damage-induced actin (ADA). The consequences of ADA are not understood. In this study, we show evidence suggesting that ADA is linked to rapid glycolytic activation upon mitochondrial damage in multiple cells, including mouse embryonic fibroblasts and effector CD8+ T lymphocytes. ADA-inducing treatments include CCCP, antimycin, rotenone, oligomycin, and hypoxia. The Arp2/3 complex inhibitor CK666 or the mitochondrial sodium-calcium exchanger (NCLX) inhibitor CGP37157 inhibits both ADA and the glycolytic increase within 5 min, supporting ADA's role in glycolytic stimulation. Two situations causing chronic reductions in mitochondrial ATP production, mitochondrial DNA depletion and mutation to the NDUFS4 subunit of complex 1 of the electron transport chain, cause persistent perimitochondrial actin filaments similar to ADA. CK666 treatment causes rapid mitochondrial actin loss and a drop in ATP in NDUFS4 knock-out cells. We propose that ADA is necessary for rapid glycolytic activation upon mitochondrial impairment, to re-establish ATP production.


Subject(s)
Actins , Adenosine Triphosphate , Mitochondria , Actins/metabolism , Adenosine Triphosphate/biosynthesis , Animals , CD8-Positive T-Lymphocytes , Cells, Cultured , Electron Transport Complex I/metabolism , Fibroblasts , Glycolysis , Mice , Mitochondria/metabolism , Mitochondria/pathology , Polymerization
11.
Mol Biol Cell ; 33(7): ar63, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35427150

ABSTRACT

The formin INF2 polymerizes a calcium-activated cytoplasmic network of actin filaments, which we refer to as calcium-induced actin polymerization (CIA). CIA plays important roles in multiple cellular processes, including mitochondrial dynamics and vesicle transport. Here, we show that nonmuscle myosin II (NMII) is activated within 60 s of calcium stimulation and rapidly recruited to the CIA network. Knockout of any individual NMII in U2OS cells affects the organization of the CIA network, as well as three downstream effects: endoplasmic-reticulum-to-mitochondrial calcium transfer, mitochondrial Drp1 recruitment, and mitochondrial division. Interestingly, while NMIIC is the least abundant NMII in U2OS cells (>200-fold less than NMIIA and >10-fold less than NMIIB), its knockout is equally deleterious to CIA. On the basis of these results, we propose that myosin II filaments containing all three NMII heavy chains exert organizational and contractile roles in the CIA network. In addition, NMIIA knockout causes a significant decrease in myosin regulatory light chain levels, which might have additional effects.


Subject(s)
Actins , Calcium , Actin Cytoskeleton/metabolism , Actins/metabolism , Calcium/metabolism , Mitochondrial Dynamics , Myosin Type II/metabolism
12.
Curr Biol ; 32(7): 1577-1592.e8, 2022 04 11.
Article in English | MEDLINE | ID: mdl-35290799

ABSTRACT

Mitochondrial damage (MtD) represents a dramatic change in cellular homeostasis, necessitating metabolic changes and stimulating mitophagy. One rapid response to MtD is a rapid peri-mitochondrial actin polymerization termed ADA (acute damage-induced actin). The activation mechanism for ADA is unknown. Here, we use mitochondrial depolarization or the complex I inhibitor metformin to induce ADA. We show that two parallel signaling pathways are required for ADA. In one pathway, increased cytosolic calcium in turn activates PKC-ß, Rac, WAVE regulatory complex, and Arp2/3 complex. In the other pathway, a drop in cellular ATP in turn activates AMPK (through LKB1), Cdc42, and FMNL formins. We also identify putative guanine nucleotide exchange factors for Rac and Cdc42, Trio and Fgd1, respectively, whose phosphorylation states increase upon mitochondrial depolarization and whose suppression inhibits ADA. The depolarization-induced calcium increase is dependent on the mitochondrial sodium-calcium exchanger NCLX, suggesting initial mitochondrial calcium efflux. We also show that ADA inhibition results in enhanced mitochondrial shape changes upon mitochondrial depolarization, suggesting that ADA inhibits these shape changes. These depolarization-induced shape changes are not fragmentation but a circularization of the inner mitochondrial membrane, which is dependent on the inner mitochondrial membrane protease Oma1. ADA inhibition increases the proteolytic processing of an Oma1 substrate, the dynamin GTPase Opa1. These results show that ADA requires the combined action of the Arp2/3 complex and formin proteins to polymerize a network of actin filaments around mitochondria and that the ADA network inhibits the rapid mitochondrial shape changes that occur upon mitochondrial depolarization.


Subject(s)
Actins , Mitochondrial Proteins , Actin-Related Protein 2-3 Complex/metabolism , Actins/metabolism , Calcium/metabolism , Formins , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Polymerization
13.
Mol Biol Cell ; 32(20): ar5, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34347505

ABSTRACT

Mitochondrial division is an important cellular process in both normal and pathological conditions. The dynamin GTPase Drp1 is a central mitochondrial division protein, driving constriction of the outer mitochondrial membrane (OMM). In mammals, the OMM protein mitochondrial fission factor (Mff) is a key receptor for recruiting Drp1 from the cytosol to the mitochondrion. Actin filaments are also important in Drp1 recruitment and activation. The manner in which Mff and actin work together in Drp1 activation is unknown. Here we show that Mff is an oligomer (most likely a trimer) that dynamically associates and disassociates through its C-terminal coiled coil, with a Kd in the range of 10 µM. Dynamic Mff oligomerization is required for Drp1 activation. While not binding Mff directly, actin filaments enhance Mff-mediated Drp1 activation by lowering the effective Mff concentration 10-fold. Total internal reflection microscopy assays using purified proteins show that Mff interacts with Drp1 on actin filaments in a manner dependent on Mff oligomerization. In U2OS cells, oligomerization-defective Mff does not effectively rescue three defects in Mff knockout cells: mitochondrial division, mitochondrial Drp1 recruitment, and peroxisome division. The ability of Mff to assemble into puncta on mitochondria depends on its oligomerization, as well as on actin filaments and Drp1.


Subject(s)
Dynamins/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Cytosol/metabolism , Dynamins/genetics , GTP Phosphohydrolases/metabolism , Humans , Membrane Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondrial Dynamics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Peptide Elongation Factors/metabolism , Protein Binding , Protein Multimerization
14.
Nature ; 593(7859): 346-347, 2021 05.
Article in English | MEDLINE | ID: mdl-33953387
15.
Curr Biol ; 31(10): R603-R618, 2021 05 24.
Article in English | MEDLINE | ID: mdl-34033793

ABSTRACT

Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.


Subject(s)
Actins , trans-Golgi Network , Actins/metabolism , Animals , Biological Transport , Endocytosis , Endosomes/metabolism , Protein Transport , trans-Golgi Network/metabolism
16.
J Cell Sci ; 134(6)2021 03 26.
Article in English | MEDLINE | ID: mdl-33622772

ABSTRACT

A genome-wide screen recently identified SEC24A as a novel mediator of thapsigargin-induced cell death in HAP1 cells. Here, we determined the cellular mechanism and specificity of SEC24A-mediated cytotoxicity. Measurement of Ca2+ levels using organelle-specific fluorescent indicator dyes showed that Ca2+ efflux from endoplasmic reticulum (ER) and influx into mitochondria were significantly impaired in SEC24A-knockout cells. Furthermore, SEC24A-knockout cells also showed ∼44% less colocalization of mitochondria and peripheral tubular ER. Knockout of SEC24A, but not its paralogs SEC24B, SEC24C or SEC24D, rescued HAP1 cells from cell death induced by three different inhibitors of sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCA) but not from cell death induced by a topoisomerase inhibitor. Thapsigargin-treated SEC24A-knockout cells showed a ∼2.5-fold increase in autophagic flux and ∼10-fold reduction in apoptosis compared to wild-type cells. Taken together, our findings indicate that SEC24A plays a previously unrecognized role in regulating association and Ca2+ flux between the ER and mitochondria, thereby impacting processes dependent on mitochondrial Ca2+ levels, including autophagy and apoptosis.


Subject(s)
Calcium , Endoplasmic Reticulum , Apoptosis , Calcium/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Thapsigargin/metabolism , Thapsigargin/pharmacology
17.
J Cell Biol ; 219(12)2020 12 07.
Article in English | MEDLINE | ID: mdl-33044556

ABSTRACT

Reversible lysine acetylation of nuclear proteins such as histones is a long-established important regulatory mechanism for chromatin remodeling and transcription. In the cytoplasm, acetylation of a number of cytoskeletal proteins, including tubulin, cortactin, and the formin mDia2, regulates both cytoskeletal assembly and stability. More recently, acetylation of actin itself was revealed to regulate cytoplasmic actin polymerization through the formin INF2, with downstream effects on ER-to-mitochondrial calcium transfer, mitochondrial fission, and vesicle transport. This finding raises the possibility that actin acetylation, along with other post-translational modifications to actin, might constitute an "actin code," similar to the "histone code" or "tubulin code," controlling functional shifts to these central cellular proteins. Given the multiple roles of actin in nuclear functions, its modifications might also have important roles in gene expression.


Subject(s)
Cytoskeletal Proteins/metabolism , Cytoskeleton/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Acetylation , Animals , Humans , Lysine/metabolism
18.
Mol Biol Cell ; 31(12): 1259-1272, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32267199

ABSTRACT

Actin-based tubular connections between cells have been observed in many cell types. Termed "tunneling nanotubes (TNTs)," "membrane nanotubes," "tumor microtubes (TMTs)," or "cytonemes," these protrusions interconnect cells in dynamic networks. Structural features in these protrusions vary between cellular systems, including tubule diameter and the presence of microtubules. We find tubular protrusions, which we classify as TMTs, in a pancreatic cancer cell line, Dartmouth-Hitchcock Pancreatic Cancer (DHPC)-018. TMTs are present in DHPC-018-derived tumors in mice, as well as in a mouse model of pancreatic cancer and a subset of primary human tumors. DHPC-018 TMTs have heterogeneous diameter (0.39-5.85 µm, median 1.92 µm) and contain actin filaments, microtubules, and cytokeratin 19-based intermediate filaments. TMTs do not allow intercellular transfer of cytoplasmic GFP. Actin filaments are cortical within the protrusion, as opposed to TNTs, in which filaments run down the center. TMTs are dynamic in length, but are long lived (median >60 min). Inhibition of actin polymerization, but not microtubules, results in TMT loss. Extracellular calcium is necessary for TMT maintenance. A second class of tubular protrusion, which we term cell-substrate protrusion, has similar width range and cytoskeletal features but makes contact with the substratum as opposed to another cell. Similar to previous work on TNTs, we find two assembly mechanisms for TMTs, which we term "pull-away" and "search-and-capture." Inhibition of Arp2/3 complex inhibits TMT assembly by both mechanisms. This work demonstrates that the actin architecture of TMTs in pancreatic cancer cells is fundamentally different from that of TNTs and demonstrates the role of Arp2/3 complex in TMT assembly.


Subject(s)
Actin-Related Protein 2-3 Complex/metabolism , Microtubules/physiology , Pancreatic Neoplasms/metabolism , Actin Cytoskeleton/metabolism , Actin-Related Protein 2-3 Complex/physiology , Actins/metabolism , Cell Line , Cell Line, Tumor , Cell Surface Extensions/metabolism , Cytoskeleton/metabolism , Humans , Intermediate Filaments/metabolism , Microtubules/metabolism , Pancreatic Neoplasms/physiopathology , Pancreatic Neoplasms
19.
J Am Soc Nephrol ; 31(2): 374-391, 2020 02.
Article in English | MEDLINE | ID: mdl-31924668

ABSTRACT

BACKGROUND: Mutations in the gene encoding inverted formin-2 (INF2), a member of the formin family of actin regulatory proteins, are among the most common causes of autosomal dominant FSGS. INF2 is regulated by interaction between its N-terminal diaphanous inhibitory domain (DID) and its C-terminal diaphanous autoregulatory domain (DAD). INF2 also modulates activity of other formins, such as the mDIA subfamily, and promotes stable microtubule assembly. Why the disease-causing mutations are restricted to the N terminus and how they cause human disease has been unclear. METHODS: We examined INF2 isoforms present in podocytes and evaluated INF2 cleavage as an explanation for immunoblot findings. We evaluated the expression of INF2 N- and C-terminal fragments in human kidney disease conditions. We also investigated the localization and functions of the DID-containing N-terminal fragment in podocytes and assessed whether the FSGS-associated R218Q mutation impairs INF2 cleavage or the function of the N-fragment. RESULTS: The INF2-CAAX isoform is the predominant isoform in podocytes. INF2 is proteolytically cleaved, a process mediated by cathepsin proteases, liberating the N-terminal DID to function independently. Although the N-terminal region normally localizes to podocyte foot processes, it does not do so in the presence of FSGS-associated INF2 mutations. The C-terminal fragment localizes to the cell body irrespective of INF2 mutations. In podocytes, the N-fragment localizes to the plasma membrane, binds mDIA1, and promotes cell spreading in a cleavage-dependent way. The disease-associated R218Q mutation impairs these N-fragment functions but not INF2 cleavage. CONCLUSIONS: INF2 is cleaved into an N-terminal DID-containing fragment and a C-terminal DAD-containing fragment. Cleavage allows the N-terminal fragment to function independently and helps explain the clustering of FSGS-associated mutations.


Subject(s)
Formins/genetics , Glomerulosclerosis, Focal Segmental/genetics , Mutation , Peptide Fragments/physiology , Podocytes/physiology , Animals , Cathepsins/physiology , Cells, Cultured , Formins/physiology , Glomerulosclerosis, Focal Segmental/etiology , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Protein Isoforms
20.
Proc Natl Acad Sci U S A ; 117(1): 439-447, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31871199

ABSTRACT

INF2 is a formin protein that accelerates actin polymerization. A common mechanism for formin regulation is autoinhibition, through interaction between the N-terminal diaphanous inhibitory domain (DID) and C-terminal diaphanous autoregulatory domain (DAD). We recently showed that INF2 uses a variant of this mechanism that we term "facilitated autoinhibition," whereby a complex consisting of cyclase-associated protein (CAP) bound to lysine-acetylated actin (KAc-actin) is required for INF2 inhibition, in a manner requiring INF2-DID. Deacetylation of actin in the CAP/KAc-actin complex activates INF2. Here we use lysine-to-glutamine mutations as acetylmimetics to map the relevant lysines on actin for INF2 regulation, focusing on K50, K61, and K328. Biochemically, K50Q- and K61Q-actin, when bound to CAP2, inhibit full-length INF2 but not INF2 lacking DID. When not bound to CAP, these mutant actins polymerize similarly to WT-actin in the presence or absence of INF2, suggesting that the effect of the mutation is directly on INF2 regulation. In U2OS cells, K50Q- and K61Q-actin inhibit INF2-mediated actin polymerization when expressed at low levels. Direct-binding studies show that the CAP WH2 domain binds INF2-DID with submicromolar affinity but has weak affinity for actin monomers, while INF2-DAD binds CAP/K50Q-actin 5-fold better than CAP/WT-actin. Actin in complex with full-length CAP2 is predominately ATP-bound. These interactions suggest an inhibition model whereby CAP/KAc-actin serves as a bridge between INF2 DID and DAD. In U2OS cells, INF2 is 90-fold and 5-fold less abundant than CAP1 and CAP2, respectively, suggesting that there is sufficient CAP for full INF2 inhibition.


Subject(s)
Actin Cytoskeleton/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Formins/metabolism , Membrane Proteins/metabolism , Acetylation , Actins/genetics , Amino Acid Substitution , Cell Cycle Proteins , Cell Line, Tumor , Cytoskeletal Proteins , Glutamine/genetics , Glutamine/metabolism , Humans , Lysine/genetics , Lysine/metabolism , Mutation , Protein Domains/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...