Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Main subject
Publication year range
1.
Opt Express ; 31(24): 39514-39527, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-38041271

ABSTRACT

We describe the application of an AI-driven system to autonomously align complex x-ray-focusing mirror systems, including mirrors systems with variable focus spot sizes. The system has been developed and studied on a digital twin of nanofocusing X-ray beamlines, built using advanced optical simulation tools calibrated with wavefront sensing data collected at the beamline.We experimentally demonstrated that the system is reliably capable of positioning a focused beam on the sample, both by simulating the variation of a beamline with random perturbations due to typical changes in the light source and optical elements over time, and by conducting similar tests on an actual focusing mirror system.

2.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38117200

ABSTRACT

Next-generation synchrotron radiation facilities, such as the Advanced Photon Source Upgrade (APS-U), bring significant advancements in scientific research capabilities, necessitating advanced diagnostic tools. Central to these diagnostics are x-ray wavefront sensors, crucial for preserving beam properties, including brightness, coherence, and stability. This paper presents two novel wavefront sensor prototypes developed at the APS using the coded-mask-based technique. The first is a compact design tailored for specific conditions and adaptability to diverse beamline configurations. The second, an adjustable zoom version, offers flexibility to accommodate a wide range of beam conditions. Both prototypes underwent rigorous testing at the APS 28-ID-B beamline and demonstrated their effectiveness in both absolute wavefront sensing and relative metrology modes. These results highlight their promise in beamline diagnostics, potentially enabling applications such as beamline auto-alignment and real-time wavefront manipulation.

3.
Opt Express ; 31(13): 21264-21279, 2023 Jun 19.
Article in English | MEDLINE | ID: mdl-37381230

ABSTRACT

A neural-network machine learning model is developed to control a bimorph adaptive mirror to achieve and preserve aberration-free coherent X-ray wavefronts at synchrotron radiation and free electron laser beamlines. The controller is trained on a mirror actuator response directly measured at a beamline with a real-time single-shot wavefront sensor, which uses a coded mask and wavelet-transform analysis. The system has been successfully tested on a bimorph deformable mirror at the 28-ID IDEA beamline of the Advanced Photon Source at Argonne National Laboratory. It achieved a response time of a few seconds and maintained desired wavefront shapes (e.g., a spherical wavefront) with sub-wavelength accuracy at 20 keV of X-ray energy. This result is significantly better than what can be obtained using a linear model of the mirror's response. The developed system has not been tailored to a specific mirror and can be applied, in principle, to different kinds of bending mechanisms and actuators.

4.
Nano Lett ; 23(1): 1-7, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36541700

ABSTRACT

Developing new methods that reveal the structure of electrode materials under polarization is key to constructing robust structure-property relationships. However, many existing methods lack the spatial resolution in structural changes and fidelity to electrochemical operating conditions that are needed to probe catalytically relevant structures. Here, we combine a nanopipette electrochemical cell with three-dimensional X-ray Bragg coherent diffractive imaging to study how strain in a single Pt grain evolves in response to applied potential. During polarization, marked changes in surface strain arise from the Coulombic attraction between the surface charge on the electrode and the electrolyte ions in the electrochemical double layers, while the strain in the bulk of the crystal remains unchanged. The concurrent surface redox reactions have a strong influence on the magnitude and nature of the strain changes under polarization. Our studies provide a powerful blueprint to understand how structural evolution influences electrochemical performance at the nanoscale.


Subject(s)
Electrodes , Oxidation-Reduction
5.
Rev Sci Instrum ; 92(2): 023908, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648142

ABSTRACT

Solid-phase epitaxy (SPE) and other three-dimensional epitaxial crystallization processes pose challenging structural and chemical characterization problems. The concentration of defects, the spatial distribution of elastic strain, and the chemical state of ions each vary with nanoscale characteristic length scales and depend sensitively on the gas environment and elastic boundary conditions during growth. The lateral or three-dimensional propagation of crystalline interfaces in SPE has nanoscale or submicrometer characteristic distances during typical crystallization times. An in situ synchrotron hard x-ray instrument allows these features to be studied during deposition and crystallization using diffraction, resonant scattering, nanobeam and coherent diffraction imaging, and reflectivity. The instrument incorporates a compact deposition system allowing the use of short-working-distance x-ray focusing optics. Layers are deposited using radio-frequency magnetron sputtering and evaporation sources. The deposition system provides control of the gas atmosphere and sample temperature. The sample is positioned using a stable mechanical design to minimize vibration and drift and employs precise translation stages to enable nanobeam experiments. Results of in situ x-ray characterization of the amorphous thin film deposition process for a SrTiO3/BaTiO3 multilayer illustrate implementation of this instrument.

6.
Nat Commun ; 12(1): 1721, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33741925

ABSTRACT

The stacking sequence of hexagonal close-packed and related crystals typically results in steps on vicinal {0001} surfaces that have alternating A and B structures with different growth kinetics. However, because it is difficult to experimentally identify which step has the A or B structure, it has not been possible to determine which has faster adatom attachment kinetics. Here we show that in situ microbeam surface X-ray scattering can determine whether A or B steps have faster kinetics under specific growth conditions. We demonstrate this for organo-metallic vapor phase epitaxy of (0001) GaN. X-ray measurements performed during growth find that the average width of terraces above A steps increases with growth rate, indicating that attachment rate constants are higher for A steps, in contrast to most predictions. Our results have direct implications for understanding the atomic-scale mechanisms of GaN growth and can be applied to a wide variety of related crystals.

7.
J Synchrotron Radiat ; 28(Pt 1): 125-130, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33399561

ABSTRACT

Side-bounce beamlines with fixed-exit angles have been intended to operate with only one selected energy. However, a tunable monochromator in a new geometry is presented here that will make side-bounce beamlines energy tunable. It requires the addition of two more rotations. Analytic solutions for the values of these two rotation angles are provided. The validity of the new concept was checked by ray tracing and two-dimensional searches in the additional angles. Operational details on the new scheme, including the exit offset and steering of the beams, were determined. In addition to tunability, the new monochromator will reduce the loss from the polarization factor at low energies.

8.
J Synchrotron Radiat ; 25(Pt 4): 1036-1047, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29979165

ABSTRACT

In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory to obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator (`pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. The methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.

9.
Rev Sci Instrum ; 88(3): 035113, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28372371

ABSTRACT

We describe an instrument that exploits the ongoing revolution in synchrotron sources, optics, and detectors to enable in situ studies of metal-organic vapor phase epitaxy (MOVPE) growth of III-nitride materials using coherent x-ray methods. The system includes high-resolution positioning of the sample and detector including full rotations, an x-ray transparent chamber wall for incident and diffracted beam access over a wide angular range, and minimal thermal sample motion, giving the sub-micron positional stability and reproducibility needed for coherent x-ray studies. The instrument enables surface x-ray photon correlation spectroscopy, microbeam diffraction, and coherent diffraction imaging of atomic-scale surface and film structure and dynamics during growth, to provide fundamental understanding of MOVPE processes.

10.
Sci Rep ; 6: 21999, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26915398

ABSTRACT

Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

11.
J Synchrotron Radiat ; 21(Pt 6): 1252-61, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25343792

ABSTRACT

Novel X-ray imaging of structural domains in a ferroelectric epitaxial thin film using diffraction contrast is presented. The full-field hard X-ray microscope uses the surface scattering signal, in a reflectivity or diffraction experiment, to spatially resolve the local structure with 70 nm lateral spatial resolution and sub-nanometer height sensitivity. Sub-second X-ray exposures can be used to acquire a 14 µm × 14 µm image with an effective pixel size of 20 nm on the sample. The optical configuration and various engineering considerations that are necessary to achieve optimal imaging resolution and contrast in this type of microscopy are discussed.

12.
Nat Commun ; 5: 4191, 2014 Jun 18.
Article in English | MEDLINE | ID: mdl-24939393

ABSTRACT

In developing cost-effective complex oxide materials for the oxygen evolution reaction, it is critical to establish the missing links between structure and function at the atomic level. The fundamental and practical implications of the relationship on any oxide surface are prerequisite to the design of new stable and active materials. Here we report an intimate relationship between the stability and reactivity of oxide catalysts in exploring the reaction on strontium ruthenate single-crystal thin films in alkaline environments. We determine that for strontium ruthenate films with the same conductance, the degree of stability, decreasing in the order (001)>(110)>(111), is inversely proportional to the activity. Both stability and reactivity are governed by the potential-induced transformation of stable Ru(4+) to unstable Ru(n>4+). This ordered(Ru(4+))-to-disordered(Ru(n>4+)) transition and the development of active sites for the reaction are determined by a synergy between electronic and morphological effects.

13.
Phys Rev Lett ; 108(8): 087601, 2012 Feb 24.
Article in English | MEDLINE | ID: mdl-22463572

ABSTRACT

We show that light drives large-amplitude structural changes in thin films of the prototypical ferroelectric PbTiO3 via direct coupling to its intrinsic photovoltaic response. Using time-resolved x-ray scattering to visualize atomic displacements on femtosecond time scales, photoinduced changes in the unit-cell tetragonality are observed. These are driven by the motion of photogenerated free charges within the ferroelectric and can be simply explained by a model including both shift and screening currents, associated with the displacement of electrons first antiparallel to and then parallel to the ferroelectric polarization direction.

14.
Phys Rev Lett ; 105(16): 167601, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-21231014

ABSTRACT

Polarization switching in ferroelectrics has been thought to occur only through the nucleation and growth of new domains. Here we use in situ synchrotron x-ray scattering to monitor switching controlled by applied chemical potential. In sufficiently thin PbTiO3 films, nucleation is suppressed and switching occurs by a continuous mechanism, i.e., by uniform decrease and inversion of the polarization without domain formation. The observed lattice parameter shows that the electric field in the film during switching reaches the theoretical intrinsic coercive field.

15.
J Phys Chem B ; 111(45): 12945-58, 2007 Nov 15.
Article in English | MEDLINE | ID: mdl-17941660

ABSTRACT

This Feature Article reviews recent work on an optical technique for fabricating, in a single exposure step, three-dimensional (3D) nanostructures with diverse structural layouts. The approach, which we refer to as proximity field nanopatterning, uses conformable, elastomeric phase masks to pattern thick layers of transparent, photosensitive materials in a conformal contact mode geometry. Aspects of the optics, the materials, and the physical chemistry associated with this method are outlined. A range of 3D structures illustrate its capabilities, and several application examples demonstrate possible areas of use in technologies ranging from microfluidics to photonic materials to density gradient structures for chemical release and high-energy density science.

16.
Opt Express ; 15(10): 6358-66, 2007 May 14.
Article in English | MEDLINE | ID: mdl-19546940

ABSTRACT

This paper introduces approaches that combine micro/nanomolding, or nanoimprinting, techniques with proximity optical phase mask lithographic methods to form three dimensional (3D) nanostructures in thick, transparent layers of photopolymers. The results demonstrate three strategies of this type, where molded relief structures in these photopolymers represent (i) fine (<1 microm) features that serve as the phase masks for their own exposure, (ii) coarse features (>1 microm) that are used with phase masks to provide access to large structure dimensions, and (iii) fine structures that are used together phase masks to achieve large, multilevel phase modulations. Several examples are provided, together with optical modeling of the fabrication process and the transmission properties of certain of the fabricated structures. These approaches provide capabilities in 3D fabrication that complement those of other techniques, with potential applications in photonics, microfluidics, drug delivery and other areas.

SELECTION OF CITATIONS
SEARCH DETAIL
...