Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS One ; 14(3): e0206195, 2019.
Article in English | MEDLINE | ID: mdl-30870424

ABSTRACT

The diversity-productivity, diversity-invasibility, and diversity-stability hypotheses propose that increasing species diversity should lead, respectively, to increased average biomass productivity, invasion resistance, and stability. We tested these three hypotheses in the context of cover crop mixtures, evaluating the effects of increasing cover crop mixture diversity on aboveground biomass, weed suppression, and biomass stability. Twenty to forty cover crop treatments were replicated three or four times at eleven sites using eighteen species representing three cover crop species each from six pre-defined functional groups: cool-season grasses, cool-season legumes, cool-season brassicas, warm-season grasses, warm-season legumes, and warm-season broadleaves. Each species was seeded as a pure stand, and the most diverse treatment contained all eighteen species. Remaining treatments included treatments representing intermediate levels of cover crop species and functional richness and a no cover crop control. Cover crop seeding dates ranged from late July to late September with both cover crop and weed aboveground biomass being sampled prior to winterkill. Stability was assessed by evaluating the variability in cover crop biomass for each treatment across plots within each site. While increasing cover crop mixture diversity was associated with increased average aboveground biomass, we assert that this was the result of the average biomass of the pure stands being drawn down by low biomass species rather than due to niche complementarity or increased resource use efficiency. At no site did the highest biomass mixture produce more than the highest biomass pure stand. Furthermore, while increases in cover crop mixture diversity were correlated with increases in weed suppression and biomass stability, we argue that this was largely the result of diversity co-varying with aboveground biomass, and that differences in aboveground biomass rather than differences in diversity drove the differences observed in weed suppression and stability.


Subject(s)
Agriculture/methods , Biodiversity , Biomass , Crops, Agricultural/growth & development , Seeds/growth & development , Weed Control/methods , Ecosystem , Seasons
2.
Environ Entomol ; 37(5): 1332-43, 2008 Oct.
Article in English | MEDLINE | ID: mdl-19036214

ABSTRACT

Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.


Subject(s)
Asclepias/metabolism , Host-Parasite Interactions , Moths/physiology , Photosynthesis , Plant Leaves/metabolism , Animals , Asclepias/parasitology , Larva/physiology , Plant Leaves/parasitology
3.
J Med Entomol ; 45(1): 157-9, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18283957

ABSTRACT

Infestation of animal tissues by dipteran larvae (myiasis) commonly occurs in many species, but it is unusual for humans in temperate regions. Nevertheless, human myiasis is regularly observed in many primary care facilities in the United States. Beyond medical issues associated with treating human myiasis, both the causal agent and the longevity of myiasis can have legal implications, for example, as evidence of neglect. Cases of human myiasis in the United States typically involve imported myiasis from torsalo, Dermatobia hominis (Linnaeus, Jr.) (Diptera: Oestridae), or facultative myiasis from calliphorids. Here, however, we report two cases of wound myiasis caused by phorid larvae occurred in southeastern Nebraska within 10 mo. Degree-day analysis indicates initial infestation occurred 2 and 3 d before discovery. There are few previous reports of phorid wound myiasis; so, the occurrence of two cases in so short a period suggests that phorids are more important than previously appreciated.


Subject(s)
Diptera/classification , Diptera/physiology , Myiasis/parasitology , Wounds and Injuries/parasitology , Animals , Humans , Larva/classification , Male , Pupa
4.
J Econ Entomol ; 100(4): 1268-75, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17849879

ABSTRACT

The soybean aphid, Aphis glycines Matsumura, was introduced to north central North America from Asia in 2000, and it has become a major pest of soybean, Glycine max (L.) Merr. Understanding how natural enemies impact aphid populations in the field is an important component in developing a comprehensive management plan. We examined the impact of naturally occurring predators in the field by using exclusion cages during July-August 2004 and 2005. Field cages of different mesh diameters were used to exclude different sizes of natural enemies from aphid-infested plots. Plots were surveyed twice weekly for A. glycines and natural enemies. Densities were recorded. Cage effects on mean temperature and soybean growth were found to be insignificant. Significant differences in aphid density were found between treatments in both years of the study (2004 and 2005); however, aphid densities between years were highly variable. Orius insidiosus (Say) was the most commonly occurring predator in the field. Other natural enemies were present in both years but not in high numbers. Parasitoids were present in both years, but their numbers did not suppress aphid densities. Treatment differences within years were related to the abundance of natural enemies. The large differences in aphid abundance between years were associated with the higher number of O. insidiosus found in the field in 2005 (416 total O. insidiosus) than in 2004 (149 total O. insidiosus). This study suggests that naturally occurring predators, primarily O. insidiosus, can have a large impact on A. glycines populations when predator populations are established before initial A. glycines colonization.


Subject(s)
Aphids/physiology , Glycine max , Animals , Heteroptera/physiology , Mortality , Nebraska , Population Dynamics , Predatory Behavior
5.
J Med Entomol ; 44(2): 351-8, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17427708

ABSTRACT

The use of the postmortem interval (PMI) in practical applications of forensic entomology is based upon developmental data of blow flies (Diptera: Calliphoridae) generated under controlled environmental conditions. Careful review of the published forensic entomology data sets showed that experimental (environmental) parameters differed between studies. Despite the differences in study design, there are no empirical data on the effect of photoperiod on blow fly development; yet, photoperiod has been shown to alter some insect development and behavior among noncalliphorids. Consequently, will differences in photoperiod alter the developmental times of calliphorids, and thereby alter PMI estimates? To answer this question, we used a replicated design with precise temperature measurement to examine the effects of photoperiod on the forensically important blow fly Phormia regina (Meigen). We concluded that inaccurate temperature recordings by using set-chamber temperatures over rearing-container temperatures would have overshadowed any affect light had on development. Second, constant light increased variation in overall adult developmental time and significantly delayed development compared with cyclic light. Finally, not accounting for delayed development induced by photoperiod underestimated the initial empirical estimate of the PMI. These sources of variation need to be included in forensic estimates because this variation can compromise predictions of PMI based upon current data sets. Without pinpointing optimal photoperiods with which to test development, we must assume that potentially large sources of variability exist within current estimates of the PMI.


Subject(s)
Diptera/growth & development , Life Cycle Stages/physiology , Photoperiod , Animals , Diptera/physiology , Linear Models , Ovum , Pupa , Temperature , Time Factors
6.
J Med Entomol ; 43(6): 1276-86, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17162964

ABSTRACT

Precise developmental data for forensic indicator blow fly species are essential for accuracy in the estimate of the post-mortem interval (PMI). Why, then, does the determination of the PMI result in conflicting time frames when published conspecific developmental data are used? To answer this question, we conducted constant temperature trials between the developmental minimum temperature and upper threshold temperatures (8-32 degrees C) on the forensically important blow fly species Phormia regina (Meigen) (Diptera: Calliphoridae). Flies were reared using two designs to quantify sources of variation. We measured rearing container temperatures and internal growth chamber temperatures by using thermocouples to accurately record temperatures experienced by larvae and to construct a degree-day model. Differences in experimental design, as seen across temperature studies for this fly species, did not significantly impact larval development. We also found that using set chamber temperatures rather than rearing container temperatures altered the final degree-day model. Using any minimum threshold (including an empirically determined true minimum) other than that from linear interpolation (x-intercept) violated degree-day assumptions and invalidated estimates of the PMI. We observed the minimum developmental temperature to be higher (14 degrees C) than that generated under the x-intercept method (5.46 degrees C) by using data from oviposition to adult emergence. This difference along with the noted difference in accumulated degree-days (using different base temperatures) suggests a need for additional experimentation on other forensically important fly species at low temperature thresholds to help with development of curvilinear models. Former and current estimates of the PMI may be inaccurate if the process to determine the time frame ignored degree-day model assumptions or was based upon questionable data sets.


Subject(s)
Diptera/growth & development , Forensic Sciences/methods , Models, Biological , Temperature , Animals , Time Factors
7.
J Econ Entomol ; 96(1): 188-93, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12650361

ABSTRACT

The soybean aphid, Aphis glycines Matsumara, was discovered in the United States in the summer of 2000. Since that initial discovery, the aphid has spread across northern soybean production regions. In 2001, we examined the physiological responses of soybeans to low aphids densities (fewer than 50 aphids/leaf). In this study, we determined photosynthetic rates, leaf fluorescence responses, and photosynthetic responses to variable carbon dioxide and light levels. In addition, analyses for chlorophyll content and stable carbon isotope ratios were used to differentiate potential differences in stomatal versus mesophyll limitations to photosynthesis. We observed rate reductions of up to 50% on infested leaflets, including lealets with no apparent symptoms of aphid injury (such as chlorosis). Differences in fluorescence data indicated that photoelectron transport was not impaired. These results indicate that substantial physiological impact on soybean is possible even at low aphid densities. Also, the conventional view of aphid injury acting through reductions in chlorophyll content and light-harvesting reactions of photosynthesis is not supported by our findings in this system.


Subject(s)
Aphids/physiology , Glycine max/physiology , Photosynthesis , Plant Diseases , Animals , Carbon Dioxide/administration & dosage , Chlorophyll/analysis , Fluorescence , Kinetics , Light , Plant Leaves/physiology , Population Density
8.
J Econ Entomol ; 96(1): 194-201, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12650362

ABSTRACT

The impact of light and its role in Russian wheat aphid, Diuraphis noxia (Mordvilko), damage symptom formation, and photosynthetic capacity in 'Arapahoe' wheat (Triticum aestivum L.) were examined. After 72 h under continuous dark or continuous light regimes, the number of aphids (nymphs), leaf rolling and chlorosis ratings, fresh leaf weight, and chlorophyll contents were recorded. Photosynthetic rates, chlorophyll a, kinetics and chlorophyll extractions also were determined. Aphid infestation caused significant reductions in plant height, fresh weight, gas exchange, and chlorophyll fluorescence only under continuous light. Under the 72 h continuous dark regime, aphid infestation did not cause either damage symptom formation or reduction in plant growth or metabolism (photosynthesis). Furthermore, significantly more D. noxia nymphs were produced under continuous light condition than continuous dark. Our results demonstrate that the development of D. noxia feeding damage symptoms (i.e., leaf rolling and chlorotic streaks) on susceptible wheat seedlings is a light-activated process, even though the elicitor of the plant damage symptoms is aphid feeding.


Subject(s)
Aphids/physiology , Light , Triticum/physiology , Animals , Aphids/growth & development , Carbon Dioxide/physiology , Chlorophyll/analysis , Chlorophyll/metabolism , Fluorescence , Photosynthesis , Plant Diseases , Plant Leaves/anatomy & histology , Plant Leaves/chemistry , Plant Leaves/physiology , Population Density , Seedlings/growth & development , Seedlings/physiology , Triticum/growth & development
9.
J Econ Entomol ; 94(6): 1369-77, 2001 Dec.
Article in English | MEDLINE | ID: mdl-11777038

ABSTRACT

The European corn borer, Ostrinia nubilalis (Hübner), causes economic damage to corn, Zea mays L., throughout the Corn Belt. Because this insect has become the primary target of Bacillus thuringiensis Berliner (Bt) transgenic corn, current efforts addressing the management of O. nubilalis resistance to Bt corn require information on adult European corn borer dispersal and factors affecting its dispersal. In 1998 we conducted mark-release-recapture, release-recapture, and caged-mating studies to directly measure and compare local dispersal patterns of O. nubilalis adults within and proximal to irrigated and non-irrigated cornfields. Releases of marked adults were made corresponding to the first and second flight of O. nubilalis in eastern Nebraska. Adult dispersal was significantly different between irrigated and non-irrigated cornfields. Released adults tended to remain in and near irrigated cornfields, but dispersed out of and away from non-irrigated cornfields. When released at the edge of the cornfield, neither male nor unmated female O. nubilalis displayed an initial tendency to move out of irrigated corn and into the mixed smooth bromegrass (Bromus inermis Leyss) and broadleaf-weed field edge. Mating efficiency in a late-season cornfield was not significantly different than in dense foxtail (Setaria spp.). Generally, we found that adult O. nubilalis dispersal may vary depending on variables such as action-site availability and agronomic practices and their interaction with O. nubilalis life history.


Subject(s)
Moths , Zea mays , Agriculture , Animals , Demography , Female , Male
10.
J Econ Entomol ; 93(5): 1429-36, 2000 Oct.
Article in English | MEDLINE | ID: mdl-11057714

ABSTRACT

An ongoing change in soybean production gaining popularity in the United States is a reduction in row spacing. Plant canopy closure is quicker and leaf area index is greater, thus yield is usually higher. Because yield response to insect defoliation is primarily a function of how defoliation causes changes in light interception, the possibility exists that the insect-injury-yield-loss relationship might differ among row widths. Soybean was grown in four states using similar methodologies. Insect defoliation was simulated by picking leaflets based on an insect defoliation model. Plant growth measurements were taken immediately following the end of defoliation. Numerous independent variables were measured or calculated, including percentage light interception, leaf area index, percentage defoliation, and leaf area per plot. Analyses of covariance were conducted on the resultant data to determine whether insect-injury-yield-loss relationships interact with row width. A significant interaction would indicate that the impact of the variables on yield was dependent on the row width, whereas a nonsignificant interaction would suggest that the relationship between the variables and yield is similar at all row widths. Few significant interactions were obtained, indicating that the impact of the variables on yield is similar across row widths. Because of the lack of significant interactions, the insect-injury-yield-loss relationships previously developed should be usable across varying row widths. Thus, treatment decisions based on light interception and leaf area indices, both considered more appropriated measures of insect injury, should be applicable for all row spacings.


Subject(s)
Glycine max , Insect Control/methods , Agriculture
11.
J Comp Physiol B ; 170(4): 307-14, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10935521

ABSTRACT

In this study, we compared survivorship, heat dissipation and biochemical features of anaerobiosis of two tiger beetle species (Coleoptera: Cicindelidae) exposed to anoxia. One species commonly experiences environmental immersion from rainfall and snowmelt (Cicindela togata), and the habitat of the other (Amblycheila cylindriformis) is not prone to flooding. The ancestral genus, A. cylindriformis, survives anoxia for only 2 days at 25 degrees C. In response to anoxia, these larvae immediately lose locomotory abilities, tissue concentrations of ATP fall precipitously within 12 h, and significant amounts of lactate are quickly produced. In contrast, C. togata larvae tolerate anoxia for 5 days. Heat dissipation is downregulated to a greater degree than that seen in A. cylindriformis (3.4% versus 14% of standard normoxic rate, respectively), the ability for locomotion is maintained and normoxic levels of ATP are defended for at least 24 h. Lactate is not accumulated until well into anoxic bout, and significant amounts of alanine are also produced. This study provides evidence that tiger beetles differ in physiological responses to anoxia, and that these differences are correlated with flooding risk and with species distribution.


Subject(s)
Adaptation, Physiological/physiology , Coleoptera/metabolism , Energy Metabolism/physiology , Hypoxia/metabolism , Adenosine Diphosphate/metabolism , Adenosine Monophosphate/metabolism , Adenosine Triphosphate/metabolism , Anaerobiosis/physiology , Animals , Disasters , Environment , Glycogen/metabolism , Hot Temperature , Inosine Monophosphate/metabolism , Lactic Acid/metabolism , Oxygen/metabolism , Phylogeny
12.
J Econ Entomol ; 93(3): 788-94, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10902331

ABSTRACT

Insecticides are used extensively on lettuce, Lactuca sativa L., grown in southwestern Arizona because of heavy insect pressure that can potentially reduce lettuce productivity. Multiple sprays are made per season to manage these insects in lettuce. One of the major concerns related to extensive insecticide applications in lettuce is the potential subtle impact of insecticides that may reduce lettuce photosynthesis and yield. We conducted field and greenhouse experiments to examine the impact of multiple insecticides and surfactant spray applications on lettuce photosynthesis and yield. Lettuce was planted in the field in 1998, insecticides and surfactant were applied, and lettuce gas-exchange and dry weights were determined. Treatments were arranged in a split-plot consisting of insecticides as main plot and surfactant as subplot treatments in a randomized complete block design with four replications. Photosynthetic rates of lettuce were significantly reduced by endosulfan, methomyl, acephate, and surfactant at seedling stage 4 h and 2 d after the spray application was made. However, the reduction in lettuce photosynthesis by these insecticides and surfactant was only transient, and lettuce photosynthesis recovered 5 d after the spray application was made. Photosynthetic rates were not altered by zeta-cypermethrin, emamectin benzoate, and spinosad at the seedling stage. Insecticides or surfactant (Kinetic, a nonionic surfactant) did not significantly affect lettuce photosynthesis after rosette formation. In addition, lettuce dry weight was not significantly altered. These studies suggest that lettuce photosynthesis may be susceptible to some insecticides at the seedling stage. Consequently, we found that biorational insecticides, introduced to manage insect pests in lettuce, have no influence on lettuce physiology at the seedling stage, unlike the chlorinated hydrocarbons, organophosphates, or carbamates tested in this study. In a greenhouse study, we found that lettuce photosynthesis and yield were not altered by Bacillus thuringiensis application. Our results indicate that B. thuringiensis and the newer insecticides, particularly biorationals, can be used to manage lettuce insect pests without significantly altering lettuce gas-exchange and yield.


Subject(s)
Insect Control/methods , Insecticides , Lactuca/physiology , Surface-Active Agents , Animals , Crops, Agricultural
SELECTION OF CITATIONS
SEARCH DETAIL
...