Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Traffic ; 24(10): 463-474, 2023 10.
Article in English | MEDLINE | ID: mdl-37679870

ABSTRACT

To understand force generation under a wide range of loads, the stepping of single kinesin molecules was measured at loads from -20 to 42 pN by optical tweezers with high temporal resolution. The optical trap has been improved to halve positional noise and increase bandwidth by using 200-nm beads. The step size of the forward and backward steps was 8.2 nm even over a wide range of loads. Histograms of the dwell times of backward steps and detachment fit well to two independent exponential equations with fast (~0.4 ms) and slow (>3 ms) time constants, indicating the existence of a fast step in addition to the conventional slow step. The dwell times of the fast steps were almost independent of the load and ATP concentration, while those of the slow backward steps and detachment depended on those. We constructed the kinetic model to explain the fast and slow steps under a wide range of loads.


Subject(s)
Kinesins , Kinetics
2.
Sci Rep ; 13(1): 10514, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386019

ABSTRACT

Dynein is a minus-end-directed motor that generates oscillatory motion in eukaryotic flagella. Cyclic beating, which is the most significant feature of a flagellum, occurs by sliding spatiotemporal regulation by dynein along microtubules. To elucidate oscillation generated by dynein in flagellar beating, we examined its mechanochemical properties under three different axonemal dissection stages. By starting from the intact 9 + 2 structure, we reduced the number of interacting doublets and determined three parameters, namely, the duty ratio, dwell time and step size, of the generated oscillatory forces at each stage. Intact dynein molecules in the axoneme, doublet bundle and single doublet were used to measure the force with optical tweezers. The mean forces per dynein determined under three axonemal conditions were smaller than the previously reported stall forces of axonemal dynein; this phenomenon suggests that the duty ratio is lower than previously thought. This possibility was further confirmed by an in vitro motility assay with purified dynein. The dwell time and step size estimated from the measured force were similar. The similarity in these parameters suggests that the essential properties of dynein oscillation are inherent to the molecule and independent of the axonemal architecture, composing the functional basis of flagellar beating.


Subject(s)
Axonemal Dyneins , Axoneme , Cilia
3.
Elife ; 112022 06 24.
Article in English | MEDLINE | ID: mdl-35749159

ABSTRACT

Bending of cilia and flagella occurs when axonemal dynein molecules on one side of the axoneme produce force and move toward the microtubule (MT) minus end. These dyneins are then pulled back when the axoneme bends in the other direction, meaning oscillatory back and forth movement of dynein during repetitive bending of cilia/flagella. There are various factors that may regulate the dynein activity, e.g. the nexin-dynein regulatory complex, radial spokes, and central apparatus. In order to understand the basic mechanism of dynein's oscillatory movement, we constructed a simple model system composed of MTs, outer-arm dyneins, and crosslinks between the MTs made of DNA origami. Electron microscopy (EM) showed pairs of parallel MTs crossbridged by patches of regularly arranged dynein molecules bound in two different orientations, depending on which of the MTs their tails bind to. The oppositely oriented dyneins are expected to produce opposing forces when the pair of MTs have the same polarity. Optical trapping experiments showed that the dynein-MT-DNA-origami complex actually oscillates back and forth after photolysis of caged ATP. Intriguingly, the complex, when held at one end, showed repetitive bending motions. The results show that a simple system composed of ensembles of oppositely oriented dyneins, MTs, and inter-MT crosslinkers, without any additional regulatory structures, has an intrinsic ability to cause oscillation and repetitive bending motions.


Subject(s)
Chlamydomonas reinhardtii , Dyneins , Axonemal Dyneins/metabolism , Axoneme/metabolism , Chlamydomonas reinhardtii/metabolism , DNA/metabolism , Dyneins/metabolism , Flagella/physiology , Microtubules/metabolism , Movement/physiology
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34088833

ABSTRACT

Changes in the molecular properties of cardiac myosin strongly affect the interactions of myosin with actin that result in cardiac contraction and relaxation. However, it remains unclear how myosin molecules work together in cardiac myofilaments and which properties of the individual myosin molecules impact force production to drive cardiac contractility. Here, we measured the force production of cardiac myofilaments using optical tweezers. The measurements revealed that stepwise force generation was associated with a higher frequency of backward steps at lower loads and higher stall forces than those of fast skeletal myofilaments. To understand these unique collective behaviors of cardiac myosin, the dynamic responses of single cardiac and fast skeletal myosin molecules, interacting with actin filaments, were evaluated under load. The cardiac myosin molecules switched among three distinct conformational positions, ranging from pre- to post-power stroke positions, in 1 mM ADP and 0 to 10 mM phosphate solution. In contrast to cardiac myosin, fast skeletal myosin stayed primarily in the post-power stroke position, suggesting that cardiac myosin executes the reverse stroke more frequently than fast skeletal myosin. To elucidate how the reverse stroke affects the force production of myofilaments and possibly heart function, a simulation model was developed that combines the results from the single-molecule and myofilament experiments. The results of this model suggest that the reversal of the cardiac myosin power stroke may be key to characterizing the force output of cardiac myosin ensembles and possibly to facilitating heart contractions.


Subject(s)
Myocardial Contraction , Myocardium/metabolism , Myofibrils/metabolism , Myosins/metabolism , Animals , Swine
5.
Sensors (Basel) ; 21(2)2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33450927

ABSTRACT

Elucidation of cell-level transport mediated by vesicles within a living cell provides key information regarding viral infection processes and also drug delivery mechanisms. Although the single-particle tracking method has enabled clear analysis of individual vesicle trajectories, information regarding the entire cell-level intracellular transport is hardly obtainable, due to the difficulty in collecting a large dataset with current methods. In this paper, we propose a visualization method of vesicle transport using optical flow, based on geometric cell center estimation and vector analysis, for measuring the trafficking directions. As a quantitative visualization method for determining the intracellular transport status, the proposed method is expected to be universally exploited in various biomedical cell image analyses.


Subject(s)
Optic Flow , Image Processing, Computer-Assisted
6.
Sci Rep ; 10(1): 20468, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235297

ABSTRACT

The heart rhythm is maintained by oscillatory changes in [Ca2+]. However, it has been suggested that the rapid drop in blood pressure that occurs with a slow decrease in [Ca2+] preceding early diastolic filling is related to the mechanism of rapid sarcomere lengthening associated with spontaneous tension oscillation at constant intermediate [Ca2+]. Here, we analyzed a new type of oscillation called hyperthermal sarcomeric oscillation. Sarcomeres in rat neonatal cardiomyocytes that were warmed at 38-42 °C oscillated at both slow (~ 1.4 Hz), Ca2+-dependent frequencies and fast (~ 7 Hz), Ca2+-independent frequencies. Our high-precision experimental observations revealed that the fast sarcomeric oscillation had high and low peak-to-peak amplitude at low and high [Ca2+], respectively; nevertheless, the oscillation period remained constant. Our numerical simulations suggest that the regular and fast rthythm is maintained by the unchanged cooperative binding behavior of myosin molecules during slow oscillatory changes in [Ca2+].


Subject(s)
Calcium/metabolism , Myocytes, Cardiac/physiology , Sarcomeres/physiology , Animals , Animals, Newborn , Homeostasis , Hot Temperature , Myocardial Contraction , Myosins/metabolism , Rats , Spatio-Temporal Analysis
7.
Transl Oncol ; 13(6): 100764, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32403030

ABSTRACT

Anticancer drug efficacy varies because the delivery of drugs within tumors and tumor responses are heterogeneous; however, these features are often more homogenous in vitro. This difference makes it difficult to accurately determine drug efficacy. Therefore, it is important to use living tumor tissues in preclinical trials to observe the heterogeneity in drug distribution and cell characteristics in tumors. In the present study, to accurately evaluate the efficacy of an antibody-drug conjugate (ADC) containing a microtubule inhibitor, we established a cell line that expresses a fusion of end-binding protein 1 and enhanced green fluorescent protein that serves as a microtubule plus-end-tracking protein allowing the visualization of microtubule dynamics. This cell line was xenografted into mice to create a model of living tumor tissue. The tumor cells possessed a greater number of microtubules with plus-ends, a greater number of meandering microtubules, and a slower rate of microtubule polymerization than the in vitro cells. In tumor tissues treated with fluorescent dye-labeled ADCs, heterogeneity was observed in the delivery of the drug to tumor cells, and microtubule dynamics were inhibited in a concentration-dependent manner. Moreover, a difference in drug sensitivity was observed between in vitro cells and tumor cells; compared with in vitro cells, tumor cells were more sensitive to changes in the concentration of the ADC. This study is the first to simultaneously evaluate the delivery and intracellular efficacy of ADCs in living tumor tissue. Accurate evaluation of the efficacy of ADCs is important for the development of effective anticancer drugs.

8.
Biomed Opt Express ; 10(12): 6611-6624, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31853420

ABSTRACT

The transport dynamics of endocytic vesicles in a living cell contains essential biomedical information. Although the movement mechanism of a vesicle by motor proteins has been revealed, understanding the precise movement of vesicles on the cytoskeleton in a living cell has been considered challenging, due to the complex 3D network of cytoskeletons. Here, we specify the shape of the 3D interaction between the vesicle and microtubule, based on the theoretically estimated location of the microtubule and the vesicle trajectory data acquired at high spatial and temporal precision. We detected that vesicles showed more frequent direction changes with either in very acute or in obtuse angles than right angles, on similar time scales in a microtubule network. Interestingly, when a vesicle interacted with a relatively longer (> 400 nm) microtubule filament, rotational movement along the axis of the microtubule was frequently observed. Our results are expected to give in-depth insight into understanding the actual 3D interactions between the intracellular molecule and complex cytoskeletal network.

9.
Adv Mater ; 31(44): e1904032, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31550402

ABSTRACT

Nanosheets have thicknesses on the order of nanometers and planar dimensions in the micrometer range. Nanomaterials that are capable of converting reversibly between 2D nanosheets and 3D structures in response to specific triggers can enable construction of nanodevices. Supra-molecular lipid nanosheets and their triggered conversions to 3D structures including vesicles and cups are reported. They are produced from lipid vesicles upon addition of amphiphilic peptides and cationic copolymers that act as peptide chaperones. By regulation of the chaperoning activity of the copolymer, 2D to 3D conversions are reversibly triggered, allowing tuning of lipid bilayer structures and functionalities.


Subject(s)
Dextrans/chemistry , Lipid Bilayers/chemistry , Nanostructures/chemistry , Peptides/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Molecular Conformation , Surface Properties
10.
Sci Rep ; 9(1): 9355, 2019 06 27.
Article in English | MEDLINE | ID: mdl-31249348

ABSTRACT

Rapid sarcomere lengthening waves propagate along a single muscle myofibril during spontaneous oscillatory contraction (SPOC). In asynchronous insect flight muscles, SPOC is thought to be almost completely synchronized over the entire myofibril. This phenomenon does not require Ca2+ regulation of the dynamics of the motor proteins, and cannot be explained simply by the longitudinal mechanical equilibrium among sarcomeres in the myofibril. In the present study, we rationalize these phenomena by considering the lateral mechanical equilibrium, in which two tensions originating from the inverse relationship between sarcomere length and lattice spacing, along with the lattice alignment, play important roles in the mechanical communication between motor proteins on adjacent filaments via the Z-disc. The proposed model is capable of explaining various SPOC phenomena based on the stochastic power-stroke mechanism of motor proteins, which responds to temporal changes in longitudinal mechanical load.


Subject(s)
Elasticity , Mechanotransduction, Cellular , Models, Biological , Molecular Motor Proteins/metabolism , Muscle Contraction , Myofibrils/physiology , Sarcomeres/metabolism , Algorithms , Biomechanical Phenomena , Muscle, Skeletal/physiology , Myosins/metabolism
11.
Biophys J ; 115(10): 1981-1992, 2018 11 20.
Article in English | MEDLINE | ID: mdl-30396511

ABSTRACT

Dimeric motor proteins, kinesin-1, cytoplasmic dynein-1, and myosin-V, move stepwise along microtubules and actin filaments with a regular step size. The motors take backward as well as forward steps. The step ratio r and dwell time τ, which are the ratio of the number of backward steps to the number of forward steps and the time between consecutive steps, respectively, were observed to change with the load. To understand the movement of motor proteins, we constructed a unified and simple mathematical model to explain the load dependencies of r and of τ measured for the above three types of motors quantitatively. Our model consists of three states, and the forward and backward steps are represented by the cycles of transitions visiting different pairs of states among the three, implying that a backward step is not the reversal of a forward step. Each of r and τ is given by a simple expression containing two exponential functions. The experimental data for r and τ for dynein available in the literature are not sufficient for a quantitative analysis, which is in contrast to those for kinesin and myosin-V. We reanalyze the data to obtain r and τ of native dynein to make up the insufficient data to fit them to the model. Our model successfully describes the behavior of r and τ for all of the motors in a wide range of loads from large assisting loads to superstall loads.


Subject(s)
Kinesins/chemistry , Kinesins/metabolism , Mechanical Phenomena , Models, Molecular , Protein Multimerization , Biomechanical Phenomena , Myosin Type V/metabolism , Protein Structure, Quaternary
12.
Sci Rep ; 8(1): 16333, 2018 11 05.
Article in English | MEDLINE | ID: mdl-30397249

ABSTRACT

A power stroke of dynein is thought to be responsible for the stepping of dimeric dynein. However, the actual size of the displacement driven by a power stroke has not been directly measured. Here, the displacements of single-headed cytoplasmic dynein were measured by optical tweezers. The mean displacement of dynein interacting with microtubule was ~8 nm at 100 µM ATP, and decreased sigmoidally with a decrease in the ATP concentration. The ATP dependence of the mean displacement was explained by a model that some dynein molecules bind to microtubule in pre-stroke conformation and generate 8-nm displacement, while others bind in the post-stroke one and detach without producing a power stroke. Biochemical assays showed that the binding affinity of the post-stroke dynein to a microtubule was ~5 times higher than that of pre-stroke dynein, and the dissociation rate was ~4 times lower. Taking account of these rates, we conclude that the displacement driven by a power stroke is 8.3 nm. A working model of dimeric dynein driven by the 8-nm power stroke was proposed.


Subject(s)
Cytoplasmic Dyneins/chemistry , Cytoplasmic Dyneins/metabolism , Dyneins/chemistry , Dyneins/metabolism , Optical Tweezers , Adenosine Triphosphate/metabolism , Humans , Kinetics , Microtubules/metabolism , Protein Multimerization , Protein Structure, Quaternary
13.
Opt Express ; 26(13): 16236-16249, 2018 Jun 25.
Article in English | MEDLINE | ID: mdl-30119458

ABSTRACT

The detection of the precise movement of a vesicle during transport in a live cell provides key information for the intracellular delivery process. Here we report a novel numerical method for analyzing three-dimensional vesicle movement. Since the vesicle moves along a linear cytoskeleton during the active transport, our method first detects the orientation and position of the cytoskeleton as a linear section based on angle correlation and linear regression, after noise reduction. Then, the precise vesicle movement is calculated using vector analysis, in terms of rotation angle and translational displacement. Using this method, various vesicle trajectories obtained via high spatiotemporal resolution microscopy can be understood..


Subject(s)
Biological Transport, Active/physiology , Cytoplasmic Vesicles/physiology , Cytoskeleton/metabolism , Liver Neoplasms/metabolism , Humans , Imaging, Three-Dimensional , Liver Neoplasms/pathology , Tumor Cells, Cultured
14.
Nat Commun ; 8: 16036, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28681850

ABSTRACT

In contrast to processive molecular motors, skeletal myosins form a large motor ensemble for contraction of muscles against high loads. Despite numerous information on the molecular properties of skeletal myosin, its ensemble effects on collective force generation have not been rigorously clarified. Here we show 4 nm stepwise actin displacements generated by synthetic myofilaments beyond a load of 30 pN, implying that steps cannot be driven exclusively by single myosins, but potentially by coordinated force generations among multiple myosins. The simulation model shows that stepwise actin displacements are primarily caused by coordinated force generation among myosin molecules. Moreover, the probability of coordinated force generation can be enhanced against high loads by utilizing three factors: strain-dependent kinetics between force-generating states; multiple power stroke steps; and high ATP concentrations. Compared with other molecular motors, our findings reveal how the properties of skeletal myosin are tuned to perform cooperative force generation for efficient muscle contraction.


Subject(s)
Actin Cytoskeleton/chemistry , Models, Biological , Muscle Fibers, Skeletal/chemistry , Myofibrils/chemistry , Myosins/chemistry , Actin Cytoskeleton/ultrastructure , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Animals , Biomechanical Phenomena , Computer Simulation , Humans , Kinetics , Muscle Fibers, Skeletal/ultrastructure , Myofibrils/ultrastructure , Myosins/ultrastructure
15.
Phys Rev E ; 95(2-1): 022411, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28297930

ABSTRACT

Our study considers the mechanism of the spontaneous oscillations of molecular motors that are driven by the power stroke principle by applying linear stability analysis around the stationary solution. By representing the coupling equation of microscopic molecular motor dynamics and mesoscopic sarcomeric dynamics by a rank-1 updated matrix system, we derived the analytical representations of the eigenmodes of the Jacobian matrix that cause the oscillation. Based on these analytical representations, we successfully derived the essential conditions for the oscillation in terms of the rate constants of the power stroke and the reversal stroke transitions of the molecular motor. Unlike the two-state model, in which the dependence of the detachment rates on the motor coordinates or the applied forces on the motors plays a key role for the oscillation, our three-state power stroke model demonstrates that the dependence of the rate constants of the power and reversal strokes on the strains in the elastic elements in the motor molecules plays a key role, where these rate constants are rationally determined from the free energy available for the power stroke, the stiffness of the elastic element in the molecular motor, and the working stroke size. By applying the experimentally confirmed values to the free energy, the stiffness, and the working stroke size, our numerical model reproduces well the experimentally observed oscillatory behavior. Furthermore, our analysis shows that two eigenmodes with real positive eigenvalues characterize the oscillatory behavior, where the eigenmode with the larger eigenvalue indicates the transient of the system of the quick sarcomeric lengthening induced by the collective reversal strokes, and the smaller eigenvalue correlates with the speed of sarcomeric shortening, which is much slower than lengthening. Applying the perturbation analyses with primal physical parameters, we find that these two real eigenvalues occur on two branches derived from a merge point of a pair of complex-conjugate eigenvalues generated by Hopf bifurcation.

16.
Sci Technol Adv Mater ; 17(1): 473-482, 2016.
Article in English | MEDLINE | ID: mdl-27877897

ABSTRACT

The processes involved in malignant gliomas damage were quantitatively evaluated by microscopy. The near-infrared fluorescent dye IR700 that is conjugated to an anti-CD133 antibody (IR700-CD133) specifically targets malignant gliomas (U87MG) and stem cells (BT142) and is endocytosed into the cells. The gliomas are then photodamaged by the release of reactive oxygen species (ROS) and the heat induced by illumination of IR700 by a red laser, and the motility of the vesicles within these cells is altered as a result of cellular damage. To investigate these changes in motility, we developed a new method that measures fluctuations in the intensity of phase-contrast images obtained from small areas within cells. The intensity fluctuation in U87MG cells gradually decreased as cell damage progressed, whereas the fluctuation in BT142 cells increased. The endocytosed IR700 dye was co-localized in acidic organelles such as endosomes and lysosomes. The pH in U87MG cells, as monitored by a pH indicator, was decreased and then gradually increased by the illumination of IR700, while the pH in BT142 cells increased monotonically. In these experiments, the processes of cell damage were quantitatively evaluated according to the motility of vesicles and changes in pH.

17.
Sci Rep ; 5: 14322, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26392299

ABSTRACT

In breast cancer, the prognosis of human epidermal growth factor receptor 2 (HER2)-positive patients (20-25%) has been dramatically improved by the clinical application of the anti-HER2 antibody drugs trastuzumab and pertuzumab. However, the clinical outcomes of HER2-negative cases with a poor prognosis have not improved, and novel therapeutic antibody drugs or diagnostic molecular markers of prognosis are urgently needed. Here, we targeted protease-activated receptor 1 (PAR1) as a new biomarker for HER2-negative patients. The developed anti-PAR1 antibody inhibited PAR1 activation by matrix metalloprotease 1 and thereby prevented cancer-cell migration and invasion. To estimate PAR1 expression levels in HER2-negative patient tissues using the antibody, user-friendly immunohistochemistry with fluorescence nanoparticles or quantum dots (QDs) was developed. Previously, immunohistochemistry with QDs was affected by tissue autofluorescence, making quantitative measurement extremely difficult. We significantly improved the quantitative sensitivity of immunohistochemistry with QDs by using an autofluorescence-subtracted image and single-QD imaging. The immunohistochemistry showed that PAR1 expression was strongly correlated with relapse-free survival time in HER2-negative breast cancer patients. Therefore, the developed anti-PAR1 antibody is a strong candidate for use as an anticancer drug and a prognostic biomarker for HER2-negative patients.


Subject(s)
Breast Neoplasms/diagnosis , Diagnostic Imaging/methods , Neoplasm Recurrence, Local/diagnosis , Quantum Dots , Adult , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/surgery , Cell Line, Tumor , Cell Movement/drug effects , Female , Humans , Immunohistochemistry , Matrix Metalloproteinase 1/metabolism , Middle Aged , Neoplasm Staging , Postoperative Care , Prognosis , Receptor, ErbB-2/metabolism , Receptor, PAR-1/antagonists & inhibitors , Receptor, PAR-1/immunology
18.
Cytoskeleton (Hoboken) ; 72(8): 388-401, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26242795

ABSTRACT

Dynein is a minus-end-directed motor that can generate (forward) force to move along the microtubule toward its minus end. In addition, axonemal dyneins were reported to oscillate in the generation of forward force, and cytoplasmic dynein is observed to generate bidirectional forces in response to defined chemical states. Both dyneins can also respond to mechanically applied force. To test whether axonemal dynein can switch direction of force generation, we measured force using an optical trap and UV-photolysis of caged ATP. We observed that isolated dynein could repeatedly generate force in both directions along the microtubule. Bidirectional force was also observed for dynein arms that are still attached on the doublet microtubules. Axonemal dynein generated force to move backward (∼ 4 pN) as well as forward (5-6 pN) along microtubules. Furthermore, backward force could be stimulated by plus-end directed external force applied to axonemal dynein before ATP application. The results show that axonemal dynein is unique exhibiting multiple modes of force generation including backward and forward force, oscillatory force and slow, repetitive bidirectional force. The results also demonstrate that mechanical strain is important for switching the directionality of force generation in axonemal dyneins.


Subject(s)
Axonemal Dyneins/metabolism , Cytoplasmic Dyneins/metabolism , Dyneins/metabolism , Sea Urchins/metabolism , Animals , Microtubules/metabolism , Movement
19.
Front Physiol ; 5: 273, 2014.
Article in English | MEDLINE | ID: mdl-25120488

ABSTRACT

Over the past decade, great developments in optical microscopy have made this technology increasingly compatible with biological studies. Fluorescence microscopy has especially contributed to investigating the dynamic behaviors of live specimens and can now resolve objects with nanometer precision and resolution due to super-resolution imaging. Additionally, single particle tracking provides information on the dynamics of individual proteins at the nanometer scale both in vitro and in cells. Complementing advances in microscopy technologies has been the development of fluorescent probes. The quantum dot, a semi-conductor fluorescent nanoparticle, is particularly suitable for single particle tracking and super-resolution imaging. This article overviews the principles of single particle tracking and super resolution along with describing their application to the nanometer measurement/observation of biological systems when combined with quantum dot technologies.

20.
PLoS One ; 9(5): e95137, 2014.
Article in English | MEDLINE | ID: mdl-24830438

ABSTRACT

Membrane vesicles (MVs) of Porphyromonas gingivalis are regarded as an offensive weapon of the bacterium, leading to tissue deterioration in periodontal disease. Therefore, isolation of highly purified MVs is indispensable to better understand the pathophysiological role of MVs in the progression of periodontitis. MVs are generally isolated by a conventional method based on ultracentrifugation of the bacterial culture supernatant. However, the resulting MVs are often contaminated with co-precipitating bacterial appendages sheared from the live bacteria. Here, we report an intriguing property of P. gingivalis MVs--their ability to bind superparamagnetic beads coated with epoxy groups (SB-Epoxy). Analysis of fractions collected during the purification revealed that all MVs of five tested P. gingivalis stains bound to SB-Epoxy. In contrast, free fimbriae in the crude MV preparation did not bind to the SB-Epoxy. The SB-Epoxy-bound MVs were easily dissociated from the SB-Epoxy using a mild denaturation buffer. These results suggest that the surface chemistry conferred by epoxy on the beads is responsible for the binding, which is mediated by noncovalent bonds. Both the structural integrity and purity of the isolated MVs were confirmed by electron microscopy. The isolated MVs also caused cell detachment from culture dishes at a physiologically relevant concentration. Assays of competitive binding between the SB-Epoxy and mixtures of MVs from five bacterial species demonstrated that only P. gingivalis MVs could be selectively eliminated from the mixtures. We suggest that this novel approach enables efficient purification and selective elimination of P. gingivalis MVs.


Subject(s)
Fimbriae, Bacterial/metabolism , Microbiological Techniques/methods , Periodontitis/microbiology , Porphyromonas gingivalis/metabolism , Bacterial Proteins/metabolism , Binding, Competitive , Cell Culture Techniques/methods , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Magnetics , Microscopy , Microscopy, Electron , Species Specificity , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...