Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(45): 50573-50580, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33135880

ABSTRACT

A neuromorphic network composed of silver nanowires coated with TiO2 is found to show certain parallels with neural networks in nature such as biological brains. Owing to the memristive properties emerging at nanowire-to-nanowire contacts, where the Ag/TiO2/Ag interface exists, the network can store information in the form of connectivity between nanowires in the network as electrically measured as an increase in conductance. The observed memory arises from an interplay between the topological constraints imposed by a complex network structure and the plasticity of its constituting memristive Ag/TiO2/Ag junctions. Regarding the long-term decay of the connectivity in the network, we further investigate the controllability of the established connectivity. Inspired by the regulated activity cycles of the human brain during sleep, a learning-sleep-recovery cycle was mimicked by applying voltage pulses, with controlling pulse heights and duty ratios, to the nanowire network. Interestingly, even when the conductance was lost during sleep, the network could quickly recover previous states of conductance in the recovery process after sleep. Comparison between results of experiments and theoretical simulations revealed that such a quick recovery of conductance can be realized by sparse voltage pulse application during sleep; in other words, sleep-dependent memory consolidation occurs and can be controlled. The present results provide clues to new learning designs in neuromorphic networks for achieving longer memory retention for future neuromorphic technology.


Subject(s)
Memory Consolidation , Nanowires/chemistry , Neural Networks, Computer , Sleep , Humans , Particle Size , Silver/chemistry , Surface Properties , Titanium/chemistry
2.
Nanoscale Adv ; 2(8): 3202-3208, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134287

ABSTRACT

Fabrication of a two-dimensional covalent network of honeycomb nanosheets comprising small 1,3,5-triamino benzene and benzene-1,3,5-tricarboxaldehyde aromatic building blocks was conducted on Au(111) in a pH-controlled aqueous solution. In situ scanning tunneling microscopy revealed a large defect-free and homogeneous honeycomb π-conjugated nanosheet at the Au(111)/liquid interface. An electrochemical potential dependence indicated that the nanosheets were the result of thermodynamic self-assembly based not only on the reaction equilibrium but also on the adsorption (partition) equilibrium, which was controlled by the building block surface coverage as a function of electrode potential.

3.
Sci Rep ; 9(1): 14920, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31624325

ABSTRACT

Neuromorphic networks are formed by random self-assembly of silver nanowires. Silver nanowires are coated with a polymer layer after synthesis in which junctions between two nanowires act as resistive switches, often compared with neurosynapses. We analyze the role of single junction switching in the dynamical properties of the neuromorphic network. Network transitions to a high-conductance state under the application of a voltage bias higher than a threshold value. The stability and permanence of this state is studied by shifting the voltage bias in order to activate or deactivate the network. A model of the electrical network with atomic switches reproduces the relation between individual nanowire junctions switching events with current pathway formation or destruction. This relation is further manifested in changes in 1/f power-law scaling of the spectral distribution of current. The current fluctuations involved in this scaling shift are considered to arise from an essential equilibrium between formation, stochastic-mediated breakdown of individual nanowire-nanowire junctions and the onset of different current pathways that optimize power dissipation. This emergent dynamics shown by polymer-coated Ag nanowire networks places this system in the class of optimal transport networks, from which new fundamental parallels with neural dynamics and natural computing problem-solving can be drawn.

4.
J Nanosci Nanotechnol ; 14(3): 2211-6, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24745214

ABSTRACT

Two-dimensional pi-conjugated metal-porphyrin covalent organic frameworks were produced in aqueous solution on an iodine-modified Au(111) surface by "on-site" azomethine coupling of Fe(III)-5,10,15,20-tetrakis(4-aminophenyl)porphyrin (FeTAPP) with terephthal dicarboxaldehyde and investigated in detail using in-situ scanning tunneling microscopy. Mixed covalent organic porphyrin frameworks consisting of FeTAPP and metal-free TAPP (H2TAPP) were prepared through simultaneous adsorption in a mixed solution as well as partial replacement of FeTAPP by H2TAPP in an as-prepared metal-porphyrin framework. In the mixed framework, the relative distribution of FeTAPP to H2TAPP was not random and revealed a preference for homo-connection rather than heteroconnection. The construction of substrate-supported, pi-conjugated covalent frameworks from multiple building blocks, including metal centers, will be of significant utility in the design of functional molecular nanoarchitectures.

5.
Langmuir ; 29(24): 7478-87, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23256867

ABSTRACT

Molecular nonwoven fabrics in the form of ultrathin layer-by-layer (LbL) helical polymer films with covalent cross-linking were assembled on substrates by an alternate ester-amide exchange reaction between poly(γ-methyl L-glutamate) (PMLG) and cross-linking agent ethylene diamine or 4,4'-diamino azobenzene. The regular growth of helical monolayers without excessive adsorption and the formation of amide bonds were confirmed by ultraviolet-visible (UV-vis) spectrophotometry, quartz crystal microbalance (QCM), ellipsometry, and infrared reflection-absorption spectroscopy (IR-RAS) measurements. Nanostructures with high uniformity and ultrathin films with few defects formed by helical rod segments of PMLG were characterized by atomic force microscopy (AFM) and Kelvin probe force microscopy (KFM).


Subject(s)
Cross-Linking Reagents/chemistry , Polyglutamic Acid/analogs & derivatives , Microscopy, Atomic Force , Polyglutamic Acid/chemistry , Spectrophotometry, Ultraviolet
6.
Langmuir ; 28(39): 13844-51, 2012 Oct 02.
Article in English | MEDLINE | ID: mdl-22954335

ABSTRACT

Two-dimensional (2D) arrays of π-conjugated aromatic polymers produced by surface-selective Schiff base coupling reactions between an aromatic diamine and an aromatic dialdehyde were investigated in detail using in situ scanning tunneling microscopy. Surface-selective coupling was achieved for almost all diamine/dialdehyde combinations attempted, although several combinations did not proceed even in homogeneous aqueous alkaline solution. Most of the combinations of an aromatic diamine and a dialdehyde, except the combinations of 4,4'-azodianiline with mono/bithiophenedicarboxaldehyde, formed highly ordered π-conjugated polymer arrays on an iodine-modified Au(111) surface in aqueous solution at a suitable pH. The simplest polymer of the various combinations tested, obtained from the combination of 1,4-diaminobenzene with terephthaldicarboxaldehyde, gave a 2D array consisting of linearly connected benzene units. Poly(azomethine) adlayers caused a positive shift in the electrochemical potential of the butterfly shaped oxidative adsorption and reductive desorption of iodine. The acceleration of the reductive desorption of iodine suggests the existence of a weak interaction between the polymer layer and iodine. Not only the first polymer adlayers but also partially adsorbed secondary adlayers with "on-top" epitaxial behavior were frequently observed for all polymer systems. The alignment of the polymer chains in the adlayers possessed a certain regularity in terms of a regular interval between polymer chains because of repulsive interpolymer interactions.


Subject(s)
Aldehydes/chemistry , Azo Compounds/chemistry , Diamines/chemistry , Polymers/chemistry , Thiosemicarbazones/chemistry , Adsorption , Gold/chemistry , Microscopy, Scanning Tunneling , Oxidation-Reduction , Polymerization , Surface Properties
7.
Chem Commun (Camb) ; 48(25): 3103-5, 2012 Mar 25.
Article in English | MEDLINE | ID: mdl-22344394

ABSTRACT

Colored Schiff-base π-conjugated polymer thin films from different combinations of aromatic amines and aldehydes have been prepared. The polymer films spontaneously form under ambient conditions by simple immersion of graphite substrates in an aqueous solution containing the monomer units. Chemical liquid deposition is achieved by delicate control of solution pH, which allows surface selective polymerization and deposition but inhibits reaction in the aqueous phase.

8.
ACS Nano ; 5(5): 3923-9, 2011 May 24.
Article in English | MEDLINE | ID: mdl-21480643

ABSTRACT

The pursuit of methods for design and preparation of robust nanoarchitectonic systems with integrated functionality through bottom-up methodologies remains a driving force in molecular nanotechnology. Through the use of π-conjugated covalent bonds, we demonstrate a general substrate-mediated, soft solution methodology for the preparation of extended π-conjugated polymeric nanoarchitectures in low-dimensions. Based on thermodynamic control over equilibrium polymerization at the solid-liquid interface whereby aromatic building blocks spontaneously and selectively link, close-packed arrays composed of one-dimensional (1-D) aromatic polymers and two-dimensional (2-D) macromolecular frameworks have been prepared and characterized by in situ scanning tunneling microscopy. This methodology eliminates the necessity for severe conditions and sophisticated equipment common to most current fabrication techniques and imparts almost infinite possibilities for the preparation of robust materials with designer molecular architectures.


Subject(s)
Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Water/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Solutions , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...