Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 9(1): 1551, 2019 02 07.
Article in English | MEDLINE | ID: mdl-30733536

ABSTRACT

Membrane proteins (such as ion channels, transporters, and receptors) and secreted proteins are essential for cellular activities. N-linked glycosylation is involved in stability and function of these proteins and occurs at Asn residues. In several organs, profiles of N-glycans have been determined by comprehensive analyses. Nevertheless, the cochlea of the mammalian inner ear, a tiny organ mediating hearing, has yet to be examined. Here, we focused on the stria vascularis, an epithelial-like tissue in the cochlea, and characterised N-glycans by liquid chromatography with mass spectrometry. This hypervascular tissue not only expresses several ion transporters and channels to control the electrochemical balance in the cochlea but also harbours different transporters and receptors that maintain structure and activity of the organ. Seventy-nine N-linked glycans were identified in the rat stria vascularis. Among these, in 55 glycans, the complete structures were determined; in the other 24 species, partial glycosidic linkage patterns and full profiles of the monosaccharide composition were identified. In the process of characterisation, several sialylated glycans were subjected sequentially to two different alkylamidation reactions; this derivatisation helped to distinguish α2,3-linkage and α2,6-linkage sialyl isomers with mass spectrometry. These data should accelerate elucidation of the molecular architecture of the cochlea.


Subject(s)
Cochlea/metabolism , Polysaccharides/analysis , Stria Vascularis/metabolism , Animals , Chromatography, High Pressure Liquid , Glycosylation , Polysaccharides/chemistry , Rats , Spectrometry, Mass, Electrospray Ionization
2.
Sci Rep ; 7(1): 13605, 2017 10 19.
Article in English | MEDLINE | ID: mdl-29051615

ABSTRACT

Identification of the causal effects of specific proteins on recurrent and partially reversible hearing loss has been difficult because of the lack of an animal model that provides reversible gene knockdown. We have developed the transgenic mouse line Actin-tTS::Nkcc1 tetO/tetO for manipulatable expression of the cochlear K+ circulation protein, NKCC1. Nkcc1 transcription was blocked by the binding of a tetracycline-dependent transcriptional silencer to the tetracycline operator sequences inserted upstream of the Nkcc1 translation initiation site. Administration of the tetracycline derivative doxycycline reversibly regulated Nkcc1 knockdown. Progeny from pregnant/lactating mothers fed doxycycline-free chow from embryonic day 0 showed strong suppression of Nkcc1 expression (~90% downregulation) and Nkcc1 null phenotypes at postnatal day 35 (P35). P35 transgenic mice from mothers fed doxycycline-free chow starting at P0 (delivery) showed weaker suppression of Nkcc1 expression (~70% downregulation) and less hearing loss with mild cochlear structural changes. Treatment of these mice at P35 with doxycycline for 2 weeks reactivated Nkcc1 transcription to control levels and improved hearing level at high frequency; i.e., these doxycycline-treated mice exhibited partially reversible hearing loss. Thus, development of the Actin-tTS::Nkcc1 tetO/tetO transgenic mouse line provides a mouse model for the study of variable hearing loss through reversible knockdown of Nkcc1.


Subject(s)
Hearing Loss/pathology , Solute Carrier Family 12, Member 2/genetics , Animals , Anti-Bacterial Agents/pharmacology , Auditory Perception/drug effects , Brain Stem/physiology , Cochlea/drug effects , Cochlea/pathology , Cochlea/ultrastructure , Doxycycline/pharmacology , Gene Expression Regulation/drug effects , Genotype , Hearing Loss/metabolism , In Situ Hybridization , Mice , Mice, Knockout , Organ of Corti/pathology , Phenotype , Repressor Proteins/genetics , Solute Carrier Family 12, Member 2/deficiency , Solute Carrier Family 12, Member 2/metabolism
3.
Front Mol Neurosci ; 10: 300, 2017.
Article in English | MEDLINE | ID: mdl-29018325

ABSTRACT

Light-gated ion channels and transporters have been applied to a broad array of excitable cells including neurons, cardiac myocytes, skeletal muscle cells and pancreatic ß-cells in an organism to clarify their physiological and pathological roles. Nonetheless, among nonexcitable cells, only glial cells have been studied in vivo by this approach. Here, by optogenetic stimulation of a different nonexcitable cell type in the cochlea of the inner ear, we induce and control hearing loss. To our knowledge, deafness animal models using optogenetics have not yet been established. Analysis of transgenic mice expressing channelrhodopsin-2 (ChR2) induced by an oligodendrocyte-specific promoter identified this channel in nonglial cells-melanocytes-of an epithelial-like tissue in the cochlea. The membrane potential of these cells underlies a highly positive potential in a K+-rich extracellular solution, endolymph; this electrical property is essential for hearing. Illumination of the cochlea to activate ChR2 and depolarize the melanocytes significantly impaired hearing within a few minutes, accompanied by a reduction in the endolymphatic potential. After cessation of the illumination, the hearing thresholds and potential returned to baseline during several minutes. These responses were replicable multiple times. ChR2 was also expressed in cochlear glial cells surrounding the neuronal components, but slight neural activation caused by the optical stimulation was unlikely to be involved in the hearing impairment. The acute-onset, reversible and repeatable phenotype, which is inaccessible to conventional gene-targeting and pharmacological approaches, seems to at least partially resemble the symptom in a population of patients with sensorineural hearing loss. Taken together, this mouse line may not only broaden applications of optogenetics but also contribute to the progress of translational research on deafness.

4.
FEBS Open Bio ; 7(9): 1392-1401, 2017 09.
Article in English | MEDLINE | ID: mdl-28904867

ABSTRACT

Voltage-dependent inactivation of ion channels contributes to the regulation of the membrane potential of excitable cells. Mouse polycystic kidney disease 2-like 1 (PKD2L1) forms voltage-dependent nonselective cation channels, which are activated but subsequently inactivated in response to membrane depolarization. Here, we found that the mutation of an asparagine 533 residue (N533Q) in the outer pore loop region of PKD2L1 caused a marked increase in outward currents induced by depolarization. In addition, the tail current analysis demonstrated that the N533Q mutants are activated during depolarization but the subsequent inactivation does not occur. Interestingly, the N533Q mutants lacked the channel activation triggered by the removal of stimuli such as extracellular alkalization and heating. Our findings suggest that the N533 residue in the outer pore loop region of PKD2L1 has a key role in the voltage-dependent channel inactivation.

5.
Nat Biomed Eng ; 1(8): 654-666, 2017 Aug.
Article in English | MEDLINE | ID: mdl-31015607

ABSTRACT

Real-time recording of the kinetics of systemically administered drugs in in vivo microenvironments may accelerate the development of effective medical therapies. However, conventional methods require considerable analyte quantities, have low sampling rates and do not address how drug kinetics correlate with target function over time. Here, we describe the development and application of a drug-sensing system consisting of a glass microelectrode and a microsensor composed of boron-doped diamond with a tip of around 40 µm in diameter. We show that, in the guinea pig cochlea, the system can measure-simultaneously and in real time-changes in the concentration of bumetanide (a diuretic that is ototoxic but applicable to epilepsy treatment) and the endocochlear potential underlying hearing. In the rat brain, we tracked the kinetics of the drug and the local field potentials representing neuronal activity. We also show that the actions of the antiepileptic drug lamotrigine and the anticancer reagent doxorubicin can be monitored in vivo. Our microsensing system offers the potential to detect pharmacological and physiological responses that might otherwise remain undetected.

6.
Pflugers Arch ; 468(10): 1637-49, 2016 10.
Article in English | MEDLINE | ID: mdl-27568193

ABSTRACT

The cochlea of the mammalian inner ear contains an endolymph that exhibits an endocochlear potential (EP) of +80 mV with a [K(+)] of 150 mM. This unusual extracellular solution is maintained by the cochlear lateral wall, a double-layered epithelial-like tissue. Acoustic stimuli allow endolymphatic K(+) to enter sensory hair cells and excite them. The positive EP accelerates this K(+) influx, thereby sensitizing hearing. K(+) exits from hair cells and circulates back to the lateral wall, which unidirectionally transports K(+) to the endolymph. In vivo electrophysiological assays demonstrated that the EP stems primarily from two K(+) diffusion potentials yielded by [K(+)] gradients between intracellular and extracellular compartments in the lateral wall. Such gradients seem to be controlled by ion channels and transporters expressed in particular membrane domains of the two layers. Analyses of human deafness genes and genetically modified mice suggested the contribution of these channels and transporters to EP and hearing. A computational model, which reconstitutes unidirectional K(+) transport by incorporating channels and transporters in the lateral wall and connects this transport to hair cell transcellular K(+) fluxes, simulates the circulation current flowing between the endolymph and the perilymph. In this model, modulation of the circulation current profile accounts for the processes leading to EP loss under pathological conditions. This article not only summarizes the unique physiological and molecular mechanisms underlying homeostasis of the EP and their pathological relevance but also describes the interplay between EP and circulation current.


Subject(s)
Action Potentials , Cochlea/physiology , Deafness/physiopathology , Extracellular Fluid/metabolism , Animals , Cochlea/metabolism , Deafness/metabolism , Homeostasis , Humans , Potassium/metabolism
7.
Pflugers Arch ; 466(10): 1933-40, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24429999

ABSTRACT

Polycystic kidney disease 2-like 1 (PKD2L1), previously called transient receptor potential polycystin 3 (TRPP3), forms a voltage-dependent nonselective cation channel that exhibits large tail currents triggered by repolarization after depolarization. Since it has previously been proposed that temperature sensitivity of some TRP channels is linked to the voltage-dependent gating, we here investigated heating effects on PKD2L1 currents in human embryonic kidney HEK293T cells overexpressing mouse PKD2L1. Tail PKD2L1 currents were increased by heating to 32 °C, but decreased at more than 36 °C. Voltage dependency of the PKD2L1 channel was shifted by heating in a bimodal fashion: an increase in temperature to 32 °C and to 36 °C shifted the activation curves toward the left and the right, respectively. In addition, heating accelerated deactivation of tail PKD2L1 currents. To analyze the channel gating kinetics, single-channel events of the PKD2L1 channel were recorded at hyperpolarized potentials under whole-cell configurations. A rise in temperature decreased the open probability of the channel. Dwell-time analysis showed that both open and closed dwell times during heating were shorter than those at room temperature. Interestingly, a rapid temperature drop after heating markedly enhanced the PKD2L1 currents at both single-channel and whole-cell levels. The rebound activation of the PKD2L1 channel was due to an increase in the open probability but not in the single-channel conductance. These results suggest that heating opens but subsequently inactivates PKD2L1 channels, which is essential for the rebound activation of the channel after heating.


Subject(s)
Calcium Channels/metabolism , Hot Temperature , Ion Channel Gating , Receptors, Cell Surface/metabolism , Animals , Calcium Channels/chemistry , HEK293 Cells , Humans , Mice , Receptors, Cell Surface/chemistry
8.
Biol Open ; 3(1): 12-21, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24429108

ABSTRACT

It has been reported that chloride-proton exchanger ClC-5 and vacuolar-type H(+)-ATPase are essential for endosomal acidification in the renal proximal cells. Here, we found that ClC-5 is expressed in the gastric parietal cells which secrete actively hydrochloric acid at the luminal region of the gland, and that it is partially localized in the intracellular tubulovesicles in which gastric H(+),K(+)-ATPase is abundantly expressed. ClC-5 was co-immunoprecipitated with H(+),K(+)-ATPase in the lysate of tubulovesicles. The ATP-dependent uptake of (36)Cl(-) into the vesicles was abolished by 2-methyl-8-(phenylmethoxy)imidazo[1,2-a]pyridine-3-acetonitrile (SCH28080), an inhibitor of H(+),K(+)-ATPase, suggesting functional expression of ClC-5. In the tetracycline-regulated expression system of ClC-5 in the HEK293 cells stably expressing gastric H(+),K(+)-ATPase, ClC-5 was co-immunoprecipitated with H(+),K(+)-ATPase, but not with endogenous Na(+),K(+)-ATPase. The SCH28080-sensitive (36)Cl(-) transporting activity was observed in the ClC-5-expressing cells, but not in the ClC-5-non-expressing cells. The mutant (E211A-ClC-5), which has no H(+) transport activity, did not show the SCH28080-sensitive (36)Cl(-) transport. On the other hand, both ClC-5 and its mutant (E211A) significantly increased the activity of H(+),K(+)-ATPase. Our results suggest that ClC-5 and H(+),K(+)-ATPase are functionally associated and that they may contribute to gastric acid secretion.

9.
Pflugers Arch ; 461(5): 507-13, 2011 May.
Article in English | MEDLINE | ID: mdl-21340459

ABSTRACT

Polycystic kidney disease 2-like 1(PKD2L1), previously called transient receptor potential polycystin 3 (TRPP3), forms constitutively active voltage-dependent nonselective cation channels in the plasma membrane. The mechanism of regulation of PKD2L1 channels, however, has been poorly understood. In the present study, we found a bell-shaped alkaline pH dependence of PKD2L1 channel activity at the single-channel and whole-cell levels in patch-clamp recordings in HEK293T cells overexpressing mouse PKD2L1: alkalization to pH 8.0-9.0 increased the PKD2L1 currents, but alkalization to pH 10.0 decreased them. Single-channel analysis revealed that alkalization changed the open probability of PKD2L1 channels, but not their single-channel conductance. In addition, the voltage dependence of PKD2L1 channels was negatively and positively shifted by treatment with solutions of pH 8.0-9.0 and pH 10.0, respectively. These results indicate that the voltage-dependent gating of PKD2L1 channels was modulated by alkalization through two different mechanisms. Interestingly, we observed rebound activation of the PKD2L1 channel on washout of the alkaline solution after PKD2L1 channel inhibition at pH 10.0, suggesting that alkalization to pH 10.0 decreased PKD2L1 currents by inactivating the channels. Consistently, the PKD2L1 tail currents were accelerated by alkalization. These results suggest that alkalization is a bimodal modulator of mouse PKD2L1 channels.


Subject(s)
Calcium Channels/physiology , Receptors, Cell Surface/physiology , Animals , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Ion Channel Gating/physiology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL