Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrason Sonochem ; 38: 829-834, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28109677

ABSTRACT

Food technologists are always looking to improve the functional properties of proteins. In this sense, in last years ultrasound has been used to improve some functional properties. For this reason, and considering that jumbo squid is an important fishery in northwest Mexico, the purpose of this research was to determine the effect of pulsed ultrasound on the physicochemical characteristics and emulsifying properties of squid (Dosidicus gigas) mantle proteins. Pulsed ultrasound (20kHz, 20, and 40% amplitude) was applied for 30, 60, and 90s to a protein extract prepared from giant squid mantle causing an increase (p<0.05) in surface hydrophobicity (So) from 108.4±1.4 to 239.1±2.4 after application of pulsed ultrasound at 40% of amplitude for 90s. The electrophoretic profile and the total and reactive sulfhydryl contents were not affected (p⩾0.05) by the ultrasound treatment. The emulsifying ability of the protein solution was improved (p<0.05), whereas the Emulsifier Activity Index (EAI) varied from123.67±5.52m2/g for the control and increased up to 217.7±3.8m2/g after application of the ultrasound. The Stability Emulsifier Index (EEI) was improved at 40% of amplitude by 60 and 90s. The results suggested that pulsed ultrasound used as pretreatment induced conformational changes in giant squid proteins, which improved the interfacial association between protein-oil phases, thus contributing to the improvement of their emulsifient properties.


Subject(s)
Chemical Phenomena , Decapodiformes/anatomy & histology , Proteins/chemistry , Ultrasonic Waves , Animals , Emulsions , Hydrophobic and Hydrophilic Interactions , Sulfhydryl Compounds/analysis
2.
Ultrason Sonochem ; 31: 558-62, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26964983

ABSTRACT

In recent years, high-energy ultrasound has been used as an alternative to improve the functional properties of various proteins, such as from milk, eggs, soy and poultry. The benefits of implementing this technology depend on the inherent characteristics of the protein source and the intensity and amplitude of the ultrasound, as well as on the pH, temperature, ionic strength, time, and all of the variables that have an effect on the physicochemical properties of proteins. Therefore, it is necessary to establish the optimal conditions for each type of food. The use of ultrasound is a promising technique in food technology with a low impact on the environment, and it has thus become known as a green technology. Therefore, this review focuses on the application of high-energy ultrasound to food; its effects on the functional properties of proteins; and how different conditions such as the frequency, time, amplitude, temperature, and protein concentration affect the functional properties.


Subject(s)
Proteins/physiology , Ultrasonics , Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...