Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
HLA ; 103(6): e15544, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38924641

ABSTRACT

HLA (HLA) are a major barrier to transplant success, as HLA-A and -B molecules are principal ligands for T-cells, and HLA-C for Killer cell Immunoglobulin-like Receptors (KIR), directing Natural Killer (NK) cell function. HLA-C molecules are designated "C1" or "C2" ligands based on residues 77 and 80, which determine the NK cell responses. Here, we investigated donor/recipient HLA-C mismatch associations with the development of chronic lung allograft dysfunction (CLAD) following lung transplantation (LTx). 310 LTx donor/recipient pairs were Next Generation Sequenced and assessed for C1 and C2 allotypes. PIRCHE scores were used to quantify HLA mismatching between donor/recipients at amino acid level and stratify recipients into low, moderate or highly mismatched groups (n = 103-104). Associations between C ligands and freedom from CLAD was assessed with Cox regression models and survival curves. C2/C2 recipients (n = 42) had less CLAD than those with C1/C1 (n = 138) or C1/C2 genotypes (n = 130) (p < 0.05). Incidence of CLAD was lower in C2/C2 recipients receiving a mismatched C1/C1 allograft (n = 14), compared to matched (n = 8) or heterozygous (n = 20) allografts. Furthermore, ~80% of these recipients (C2/C2 recipients receiving C1/C1 transplants) remained CLAD-free for 10 years post-LTx. Recipients with higher HLA-C mismatching had less CLAD (p < 0.05) an observation not explained by linkage disequilibrium with other HLA loci. Our data implicates a role for HLA-C in CLAD development. HLA-C mismatching was not detrimental to LTx outcome, but potentially beneficial, representing a paradigm shift in assessing donor/recipient matching. This may inform better selection of donor/recipient pairs and potentially more targeted approaches to treating CLAD.


Subject(s)
HLA-C Antigens , Histocompatibility Testing , Lung Transplantation , Humans , Lung Transplantation/adverse effects , HLA-C Antigens/genetics , HLA-C Antigens/immunology , Male , Female , Middle Aged , Adult , Genotype , Tissue Donors , Graft Rejection/immunology , Killer Cells, Natural/immunology , Aged , Primary Graft Dysfunction/immunology
2.
Am J Transplant ; 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37981213

ABSTRACT

Outcomes after lung transplantation (LTx) remain poor, despite advances in sequencing technology and development of algorithms defining immunologic compatibility. Presently, there is no consensus regarding the best approach to define human leukocyte antigen (HLA) compatibility in LTx. In this study, we compared 5 different HLA compatibility tools in a high-resolution HLA-typed, clinically characterized cohort, to determine which approach predicts outcomes after LTx. In this retrospective single-center study, 277 donor-recipient transplant pairs were HLA-typed using next generation sequencing. HLA compatibility was defined using HLAMatchmaker, HLA epitope mismatch algorithm (HLA-EMMA), predicted indirectly recognizable HLA epitopes (PIRCHE), electrostatic mismatch score (EMS), and amino acid mismatches (AAMMs). Associations with HLA mismatching and survival, chronic lung allograft dysfunction (CLAD), and anti-HLA donor-specific antibody (DSA) were calculated using adjusted Cox proportional modeling. Lower HLA class II mismatching was associated with improved survival as defined by HLAMatchmaker (P < .01), HLA-EMMA (P < .05), PIRCHE (P < .05), EMS (P < .001), and AAMM (P < .01). All approaches demonstrated that HLA-DRB1345 matching was associated with freedom from restrictive allograft syndrome and HLA-DQ matching with reduced DSA development. Reducing the level of HLA mismatching, in T cell or B cell epitopes, electrostatic differences, or amino acid, can improve outcomes after LTx and potentially guide immunosuppression strategies.

3.
Transplant Direct ; 8(10): e1364, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36204183

ABSTRACT

Currently, the assessment of immunological risk in lung transplantation (LTx) does not completely consider HLA compatibility at the molecular level. We have previously demonstrated the association of HLA eplets in predicting chronic lung allograft dysfunction following LTx; however, the associations between HLA eplet mismatch (epMM) loads and overall survival are unknown. Methods: In this retrospective, single-center study, 277 LTx donor-recipient pairs were high resolution HLA typed and analyzed for HLA epMMs using HLAMatchmaker (version 3.1). LTx pairs were also assessed for the presence of the previously described risk epitope mismatches DQ2-DQA1*05 and DQ7-DQA1*05. Results: HLA class I epMMs were not associated with deleterious outcomes; however, lower HLA class II (≤19), DQA1 (≤2), and combined HLA class I and II (≤29) epMM demonstrated an association with increased time to chronic lung allograft dysfunction and improved overall survival. The presence of a risk epitope mismatch was not associated with worse clinical outcomes. Conclusions: HLA epMM can risk-stratify LTx recipients and potentially guide donor-recipient matching and immunosuppression strategies.

4.
HLA ; 99(6): 580-589, 2022 06.
Article in English | MEDLINE | ID: mdl-35340124

ABSTRACT

Immune sensitization, defined as the presence of alloreactive donor-specific antibodies (DSA), is associated with increased wait-times and inferior transplant outcomes. Identifying pretransplant DSA with a physical cell-based assay is critical in defining immunological risk. However, improved solid phase antibody detection has provided the potential to forgo this physical assay. Here, we evaluated the association between DSA mean fluorescence intensity (MFI) and the recently introduced Halifaster Flow cytometry crossmatch (FXM) to determine if MFI could predict the outcome of FXM and whether a virtual crossmatch (VXM) would provide an accurate risk assessment. Sera from 134 waitlisted lung patients was retrospectively assessed by Halifaster FXM against lymphocytes preparations from 32 donors, resulting in 265 FXMs. HLA typing was performed to 2-field allelic level and Luminex single antigen beads (SAB) used to identify DSA. The association between FXM and Luminex MFI was calculated using ROC analysis. MFI threshold accuracy was confirmed using a separate validation cohort (174 recipient sera and 34 donors), whereby both VXM and FXMs were compared. From the 265 FXM performed, 48 (18%) T-cell (TFXM) and 56 (21%) B-cell (BFXM) were positive. In the evaluation cohort, MFI thresholds of 2000 for HLA-A, B, DRB1, and > 4000 for DQB1, were predictive of a positive FXM. The validation cohort of 233 paired FXM and VXM confirmed these MFI thresholds for both TFXM and BFXM with an accuracy of 91.4% and 89.3%, respectively. A positive VXM, defined with HLA-specific MFI thresholds predicts Halifaster FXM reactivity, and can potentially expedite organ allocation, by minimizing the need for the more time-consuming FXM.


Subject(s)
Isoantibodies , Lung Transplantation , Alleles , Flow Cytometry , Graft Rejection , HLA Antigens/genetics , Histocompatibility Testing/methods , Humans , Retrospective Studies , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...