Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38203994

ABSTRACT

In recent years, the field of mandibular reconstruction has made great strides in terms of hardware innovations and their clinical applications. There has been considerable interest in using computer-aided design, finite element modelling, and additive manufacturing techniques to build patient-specific surgical implants. Moreover, lattice implants can mimic mandibular bone's mechanical and structural properties. This article reviews current approaches for mandibular reconstruction, their applications, and their drawbacks. Then, we discuss the potential of mandibular devices with lattice structures, their development and applications, and the challenges for their use in clinical settings.

2.
J Mech Behav Biomed Mater ; 97: 30-40, 2019 09.
Article in English | MEDLINE | ID: mdl-31085458

ABSTRACT

The basic collagen fibril structure of tendons continues to be debated in the literature. Some studies have proposed that collagen fibrils are longitudinally discontinuous, with the load-bearing ability of tendon dependent on interfibrillar shear strength. Other evidence indicates that collagen fibrils are probably structurally continuous, running uninterrupted from osteotendinous to myotendinous junction. In this study we explored the question of collagen fibril continuity in tendon by examining fibril response to tendon loading. Tendons were subjected to high stress and/or long duration tensile loading routines, after which we examined the ultrastructure of the tendons using differential scanning calorimetry and scanning electron microscopy, comparing the results from the loaded tendons to control samples taken from the same tendons prior to loading. Our results show that under ramp loading, collagen fibril damage begins near the end of the linear region in the stress-strain response (i.e., near the yield point). When tendons are allowed to gradually elongate under static load, tendon rupture is caused by failure of collagen fibrils, not uncontrolled slippage between fibrils. Our findings indicate that the collagen fibrils of tendon are at least sufficiently long to be mechanically continuous, meaning that tensile failure of tendon does not occur as the result of uncontrolled slippage between fibrils, but by failure of the fibrils themselves.


Subject(s)
Collagen/chemistry , Tendons/physiopathology , Animals , Biomechanical Phenomena , Calorimetry, Differential Scanning , Cattle , Collagen/ultrastructure , Extracellular Matrix , Male , Materials Testing , Microscopy, Electron, Scanning , Pressure , Rupture/physiopathology , Stress, Mechanical , Temperature , Tendon Injuries , Tendons/ultrastructure , Tensile Strength , Weight-Bearing
SELECTION OF CITATIONS
SEARCH DETAIL
...