Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Cereb Blood Flow Metab ; 19(9): 1010-9, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10478653

ABSTRACT

Brain reperfusion causes prompt, severe, and prolonged protein synthesis suppression and increased phosphorylation of eukaryotic initiation factor 2alpha [eIF2alpha(P)] in hippocampal CA1 and hilar neurons. The authors hypothesized that eIF2alpha(P) dephosphorylation would lead to recovery of protein synthesis. Here the effects of insulin, which activates phosphatases, were examined by immunostaining for eIF2alpha(P) and autoradiography of in vivo 35S amino acid incorporation. Rats resuscitated from a 10-minute cardiac arrest were given 0, 2, 10 or 20 U/kg of intravenous insulin, underwent reperfusion for 90 minutes, and were perfusion fixed. Thirty minutes before perfusion fixation, control and resuscitated animals received 500 microCi/kg of 35S methionine/cysteine. Alternate 30-microm brain sections were autoradiographed or immunostained for eIF2alpha(P). Controls had abundant protein synthesis and no eIF2alpha(P) in hippocampal neurons. Untreated reperfused neurons in the CA1, hilus, and dentate gyrus had intense staining for eIF2alpha(P) and reduced protein synthesis; there was little improvement with treatment with 2 or 10 U/kg of insulin. However, with 20 U/kg of insulin, these neurons recovered protein synthesis and were free of eIF2alpha(P). These results show that the suppression of protein synthesis in the reperfused brain is reversible; they support a causal association between eIF2alpha(P) and inhibition of protein synthesis, and suggest a mechanism for the neuroprotective effects of insulin.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Hippocampus/metabolism , Hypoglycemic Agents/administration & dosage , Insulin/administration & dosage , Ischemic Attack, Transient/metabolism , Nerve Tissue Proteins/biosynthesis , Animals , Autoradiography , Hippocampus/blood supply , Hippocampus/pathology , Ischemic Attack, Transient/pathology , Male , Neurons/metabolism , Neurons/pathology , Phosphorylation , Rats , Rats, Long-Evans
2.
J Cereb Blood Flow Metab ; 17(12): 1291-302, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9397028

ABSTRACT

Postischemic brain reperfusion is associated with a substantial and long-lasting reduction of protein synthesis in selectively vulnerable neurons. Because the overall translation initiation rate is typically regulated by altering the phosphorylation of serine 51 on the alpha-subunit of eukaryotic initiation factor 2 (eIF-2 alpha), we used an antibody specific to phosphorylated eIF-2 alpha [eIF-2(alpha P)] to study the regional and cellular distribution of eIF-2(alpha P) in normal, ischemic, and reperfused rat brains. Western blots of brain postmitochondrial supernatants revealed that approximately 1% of all eIF-2 alpha is phosphorylated in controls, eIF-2(alpha P) is not reduced by up to 30 minutes of ischemia, and eIF-2(alpha P) is increased approximately 20-fold after 10 and 90 minutes of reperfusion. Immunohistochemistry shows localization of eIF-2(alpha P) to astrocytes in normal brains, a massive increase in eIF-2(alpha P) in the cytoplasm of neurons within the first 10 minutes of reperfusion, accumulation of eIF-2(alpha P) in the nuclei of selectively vulnerable neurons after 1 hour of reperfusion, and morphology suggesting pyknosis or apoptosis in neuronal nuclei that continue to display eIF-2(alpha P) after 4 hours of reperfusion. These observations, together with the fact that eIF-2(alpha P) inhibits translation initiation, make a compelling case that eIF-2(alpha P) is responsible for reperfusion-induced inhibition of protein synthesis in vulnerable neurons.


Subject(s)
Brain Ischemia/metabolism , Reperfusion Injury/metabolism , eIF-2 Kinase/metabolism , Animals , Immunohistochemistry , Male , Phosphorylation , Rats , eIF-2 Kinase/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...