Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Exp Bot ; 72(18): 6190-6204, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34086868

ABSTRACT

Plant genomes lack genes encoding intermediate filament proteins, including lamins; however, functional lamin analogues are presumed to exist in plants. Plant-specific coiled-coil proteins, that is, nuclear matrix constituent proteins (NMCPs), are the most likely candidates as the structural elements of the nuclear lamina because they exhibit a lamin-like domain arrangement. They are exclusively localized at the nuclear periphery and have functions that are analogous to those of lamins. However, their assembly into filamentous polymers has not yet been confirmed. In this study, we examined the higher-order structure of NMCP1 and NMCP2 in Apium graveolens cells by using stimulated emission depletion microscopy combined with immunofluorescence cell labelling. Our analyses revealed that NMCP1 and NMCP2 form intricate filamentous networks, which include thick segments consisting of filament bundles, forming a dense filamentous layer extending across the nuclear periphery. Furthermore, the outermost chromatin distribution was found to be in the nucleoplasm-facing region of the nuclear lamina. Recombinant Daucus carota NMCP1 with a His-tag produced in Escherichia coli refolded into dimers and self-assembled into filaments and filament bundles. These results suggest that NMCP1 and NMCP2 organize into the nuclear lamina by forming a filamentous network with filament bundles that localize at the nuclear periphery.


Subject(s)
Nuclear Lamina , Plant Proteins , Cell Nucleus , Lamins , Nuclear Matrix-Associated Proteins , Plant Proteins/genetics
2.
J Exp Bot ; 70(10): 2651-2664, 2019 05 09.
Article in English | MEDLINE | ID: mdl-30828723

ABSTRACT

Nuclear matrix constituent proteins (NMCPs), the structural components of the plant lamina, are considered to be the analogues of lamins in plants based on numerous structural and functional similarities. Current phylogenetic knowledge suggests that, in contrast to lamins, which are widely distributed in eukaryotes, NMCPs are taxonomically restricted to Streptophyta. At present, most information about NMCPs comes from angiosperms, and virtually no data are available from more ancestral groups. In angiosperms, the NMCP family comprises two phylogenetic groups, NMCP1 and NMCP2, which evolved from the NMCP1 and NMCP2 progenitor genes. Based on sequence conservation and the presence of NMCP-specific domains, we determined the structure and number of NMCP genes present in different Streptophyta clades. We analysed 91 species of embryophytes and report additional NMCP sequences from mosses, liverworts, clubmosses, horsetail, ferns, gymnosperms, and Charophyta algae. Our results confirm an origin of NMCPs in Charophyta (the earliest diverging group of Streptophyta), resolve the number and structure of NMCPs in the different clades, and propose the emergence of additional NMCP homologues by whole-genome duplication events. Immunofluorescence microscopy demonstrated localization of a basal NMCP from the moss Physcomitrella patens at the nuclear envelope, suggesting a functional conservation for basal and more evolved NMCPs.


Subject(s)
Evolution, Molecular , Nuclear Matrix-Associated Proteins/genetics , Plant Proteins/genetics , Streptophyta/genetics , Amino Acid Sequence , Biological Evolution , Conserved Sequence , Nuclear Matrix-Associated Proteins/metabolism , Plant Proteins/metabolism , Streptophyta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...