Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 21(10)2016 Oct 10.
Article in English | MEDLINE | ID: mdl-27735872

ABSTRACT

A series of novel xylitan derivatives derived from xylitol were synthesized using operationally simple procedures. A xylitan acetonide was the key intermediate used to prepare benzoate, arylsulfonate esters and 1,2,3-triazole derivatives of xylitan. These compounds were evaluated for their in vitro anti-Trypanosoma cruzi activity against trypomastigote and amastigote forms of the parasite in T. cruzi-infected cell lineages. Benznidazole was used as positive control against T. cruzi and cytotoxicity was determined in mammalian L929 cells. The arylsulfonate xylitan derivative bearing a nitro group displayed the best activity of all the compounds tested, and was slightly more potent than the reference drug benznidazole. The importance of the isopropylidene ketal moiety was established and the greater lipophilicity of these compounds suggests enhancement in cell penetration.


Subject(s)
Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacology , Xylitol/chemical synthesis , Xylitol/pharmacology , Humans , Parasitic Sensitivity Tests , Trypanosoma cruzi/drug effects , Xylitol/analogs & derivatives
2.
J Org Chem ; 78(8): 3655-75, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23535138

ABSTRACT

A modular approach to synthesize anti-Apicomplexa parasite inhibitors was developed that takes advantage of a pluripotent cyclic tetrapeptide scaffold capable of adjusting appendage and skeletal diversities in only a few steps (one to three steps). The diversification processes make use of selective radical coupling reactions and involve a new example of a reductive carbon-nitrogen cleavage reaction with SmI2. The resulting bioactive cyclic peptides have revealed new insights into structural factors that govern selectivity between Apicomplexa parasites such as Toxoplasma and Plasmodium and human cells.


Subject(s)
Apicomplexa/chemistry , Peptides, Cyclic/chemical synthesis , Plasmodium/chemistry , Toxoplasma/chemistry , Host-Parasite Interactions , Humans , Peptides, Cyclic/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...