Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-358614

ABSTRACT

Severe manifestations of COVID-19 are mostly restricted to people with comorbidities. Here we report that induced mild pulmonary morbidities render SARS-CoV-2-refractive CD-1 mice to be susceptible to this virus. Specifically, SARS-CoV-2 infection after application of low-doses of the acute-lung-injury stimulants bleomycin or ricin caused a severe disease in CD-1 mice, manifested by sustained body weight loss and mortality rates of >50%. Further studies revealed markedly higher levels of viral RNA in the lungs, heart and serum of low-dose-ricin pretreated, as compared to non-pretreated mice. Notably, the deleterious effects of SARS-CoV-2 infection were effectively alleviated by passive transfer of polyclonal or monoclonal antibodies generated against SARS-CoV-2 RBD. Thus, viral cell entry in the sensitized mice seems to involve viral RBD binding, albeit by a mechanism other than the canonical ACE2-mediated uptake route. In summary, we present a novel mice-based animal model for the study of comorbidity-dependent severe COVID-19.

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-160655

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 that emerged in December 2019 in China resulted in over 7.8 million infections and over 430,000 deaths worldwide, imposing an urgent need for rapid development of an efficient and cost-effective vaccine, suitable for mass immunization. Here, we generated a replication competent recombinant VSV-{Delta}G-spike vaccine, in which the glycoprotein of VSV was replaced by the spike protein of the SARS-CoV-2. In vitro characterization of the recombinant VSV-{Delta}G-spike indicated expression and presentation of the spike protein on the viral membrane with antigenic similarity to SARS-CoV-2. A golden Syrian hamster in vivo model for COVID-19 was implemented. We show that vaccination of hamsters with recombinant VSV-{Delta}G-spike results in rapid and potent induction of neutralizing antibodies against SARS-CoV-2. Importantly, single-dose vaccination was able to protect hamsters against SARS-CoV-2 challenge, as demonstrated by the abrogation of body weight loss of the immunized hamsters compared to unvaccinated hamsters. Furthermore, whereas lungs of infected hamsters displayed extensive tissue damage and high viral titers, immunized hamsters lungs showed only minor lung pathology, and no viral load. Taken together, we suggest recombinant VSV-{Delta}G-spike as a safe, efficacious and protective vaccine against SARS-CoV-2 infection.

SELECTION OF CITATIONS
SEARCH DETAIL
...