Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Res Toxicol ; 36(12): 1930-1937, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38032319

ABSTRACT

Aftermarket pods designed to operate with prevalent electronic nicotine delivery system (ENDS) products such as JUUL are marketed as low-cost alternatives that allow the use of banned flavored liquids. Subtle differences in the design or construction of aftermarket pods may intrinsically modify the performance of the ENDS device and the resulting nicotine and toxicant emissions relative to the original equipment manufacturer's product. In this study, we examined the electrical output of a JUUL battery and the aerosol emissions when four different brands of aftermarket pods filled with an analytical-grade mixture of propylene glycol, glycerol, and nicotine were attached to it and puffed by machine. The aerosol emissions examined included total particulate matter (TPM), nicotine, carbonyl compounds (CCs), and reactive oxygen species (ROS). We also compared the puff-resolved power and TPM outputs of JUUL and aftermarket pods. We found that all aftermarket pods drew significantly greater electrical power from the JUUL battery during puffing and had different electrical resistances and resistivity. In addition, unlike the case with the original pods, we found that with the aftermarket pods, the power provided by the battery did not vary greatly with flow rate or puff number, suggesting impairment of the temperature control circuitry of the JUUL device when used with the aftermarket pods. The greater power output with the aftermarket pods resulted in up to three times greater aerosol and nicotine output than the original product. ROS and CC emissions varied widely across brands. These results highlight that the use of aftermarket pods can greatly modify the performance and emissions of ENDS. Consumers and public health authorities should be made aware of the potential increase in the level of toxicant exposure when aftermarket pods are employed.


Subject(s)
Electronic Nicotine Delivery Systems , Tobacco Products , Vaping , Nicotine , Reactive Oxygen Species/analysis , Propylene Glycol/analysis , Aerosols , Particulate Matter , Vaping/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...