Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleosides Nucleotides Nucleic Acids ; 28(2): 67-77, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19219737

ABSTRACT

Two different approaches to synthesize oligonucleotides containing the 2 '-deoxyguanosine adducts formed by nitropyrenes are described. A direct reaction of an unmodified oligonucleotide with an activated nitropyrene derivative is a convenient biomimetic approach for generating the major adducts in DNA. A total synthetic approach, by contrast, involves several synthetic steps, including Buchwald-Hartwig Pd-catalyzed coupling, but can be used for incorporating both the major and minor adducts in DNA in high yield.


Subject(s)
DNA Adducts/chemistry , Deoxyguanosine/chemical synthesis , Oligonucleotides/chemical synthesis , Pyrenes/chemistry , Deoxyguanosine/chemistry , Oligonucleotides/chemistry
2.
Chem Res Toxicol ; 20(11): 1658-64, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17907783

ABSTRACT

The mutagenesis of the major DNA adduct N-(deoxyguanosin-8-yl)-1-aminopyrene (C8-AP-dG) formed by 1-nitropyrene was compared with the analogous C8-dG adducts of 2-aminofluorene (AF) and N-acetyl-2-aminofluorene (AAF) in simian kidney (COS-7) cells. The DNA sequence chosen for this comparison contained 5'-CCATC GCTACC-3' that has been used for solution NMR investigations. The structural and conformational differences among these lesions are well-established [Patel, D. J., Mao, B., Gu, Z., Hingerty, B. E., Gorin, A., Basu, A. K., and Broyde,S. (1998) NMR solution structures of covalent aromatic amine-DNA adducts and their mutagenic relevance. Chem. Res. Toxicol. 11, 391- 407.]. Accordingly, we found a notable difference in the viability of the progeny, which showed that the AAF adduct was most toxic and that the AF adduct was least toxic, with the AP adduct exhibiting intermediate toxicity. However, analysis of the progeny showed that translesion synthesis was predominantly error-free. Only low-level mutations (<3%) were detected with G-->T as the dominant type of mutation by all three DNA adducts. When C8-AP-dG was evaluated in a repetitive 5'-CGC GCG-3' sequence, higher mutational frequency ( approximately 8%) was observed. Again, G-->T was the major type of mutations in simian kidney cells, even though in bacteria CpG deletions predominate in this sequence [Hilario, P., Yan, S., Hingerty, B. E., Broyde, S., and Basu, A. K. (2002) Comparative mutagenesis of the C8-guanine adducts of 1-nitropyrene,and 1,6- and 1,8-dinitropyrene in a CpG repeat sequence: A slipped frameshift intermediate model for dinucleotide deletion. J. Biol. Chem. 277, 45068- 45074.]. Mutagenesis of C8-AP-dG in a 12-mer containing the local DNA sequence around codon 273 of the p53 tumor suppressor gene, where the adduct was located at the second base of this codon, was also investigated. In this 5'-GTGC GTGTTTGT-3' site, the mutations were slightly lower but not very different from the progeny derived from the 5'-CGC GCG-3' sequence. However, the mutational frequency increased by more than 50% when the 5'-C to the adduct was replaced with a 5-methylcytosine (5-MeC). With a 5-MeC, the most notable change in mutation was the enhancement of G-->A, which occurred 2.5 times relative to a 5'-C. The C8-AP-dG adduct in codon 273 dodecamer sequence with a 5'-C or 5-MeC was also evaluated in human embryonic kidney (293T) cells. Similar to COS cells, targeted mutations doubled with a 5-MeC 5' to the adduct. Except for an increase in G-->C transversions, the results in 293T were similar to that in COS cells. We conclude that C8-AP-dG mutagenesis depends on the type of cell in which it is replicated, the neighboring DNA sequence, and the methylation status of the 5'-C.


Subject(s)
DNA Adducts/toxicity , DNA/chemistry , Deoxyguanosine/analogs & derivatives , Mutagens/toxicity , Pyrenes/toxicity , Animals , Base Sequence , COS Cells , Chlorocebus aethiops , Codon , Deoxyguanosine/toxicity , Genes, p53 , Humans , Kidney/cytology , Kidney/drug effects , Magnetic Resonance Spectroscopy
3.
Cancer Res ; 66(20): 10153-61, 2006 Oct 15.
Article in English | MEDLINE | ID: mdl-17047080

ABSTRACT

Induction of mRNA for BIK proapoptotic protein by doxorubicin or gamma-irradiation requires the DNA-binding transcription factor activity of p53. In MCF7 cells, pure antiestrogen fulvestrant also induces BIK mRNA and apoptosis. Here, we provide evidence that, in contrast to doxorubicin or gamma-irradiation, fulvestrant induction of BIK mRNA is not a direct effect of the transcriptional activity of p53, although p53 is necessary for this induction. It is known that p53 up-regulated modulator of apoptosis (PUMA) mRNA is induced directly by the transcriptional activity of p53. Whereas gamma-irradiation induced both BIK and PUMA mRNA, only BIK mRNA was induced by fulvestrant. Whereas both fulvestrant and doxorubicin induced BIK mRNA, only doxorubicin enhanced the DNA-binding activity of p53 and induced PUMA mRNA. Small interfering RNA (siRNA) suppression of p53 expression as well as overexpression of dominant-negative p53 effectively inhibited the fulvestrant induction of BIK mRNA, protein, and apoptosis. Transcriptional activity of a 2-kb BIK promoter, which contained an incomplete p53-binding sequence, was not affected by fulvestrant when tested by reporter assay. Fulvestrant neither affected the stability of the BIK mRNA transcripts. Interestingly, other human breast cancer cells, such as ZR75-1, constitutively expressed BIK mRNA even without fulvestrant. In these cells, however, BIK protein seemed to be rapidly degraded by proteasome, and siRNA suppression of BIK in ZR75-1 cells inhibited apoptosis induced by MG132 proteasome inhibitor. These results suggest that expression of BIK in human breast cancer cells is regulated at the mRNA level by a mechanism involving a nontranscriptional activity of p53 and by proteasomal degradation of BIK protein.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacology , Apoptosis Regulatory Proteins/biosynthesis , Breast Neoplasms/genetics , Estradiol/analogs & derivatives , Membrane Proteins/biosynthesis , Proteasome Endopeptidase Complex/metabolism , Tumor Suppressor Protein p53/physiology , Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell Line, Tumor , Doxorubicin/pharmacology , Estradiol/pharmacology , Fulvestrant , Gamma Rays , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/radiation effects , Humans , Leupeptins/pharmacology , Membrane Proteins/genetics , Mitochondrial Proteins , Promoter Regions, Genetic , Proteasome Inhibitors , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, Estrogen/biosynthesis , Transcription, Genetic/drug effects , Transcription, Genetic/radiation effects , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
4.
J Biol Chem ; 277(47): 45068-74, 2002 Nov 22.
Article in English | MEDLINE | ID: mdl-12239219

ABSTRACT

In the Ames Salmonella typhimurium reversion assay 1,6- and 1,8-dinitropyrenes (1,6- and 1,8-DNPs) are much more potent mutagens than 1-nitropyrene (1-NP). Genetic experiments established that certain differences in the metabolism of the DNPs, which in turn result in increased DNA adduction, play a role. It remained unclear, however, if the DNP adducts, N-(guanin-8-yl)-1-amino-6 ()-nitropyrene (Gua-C8-1,6-ANP and Gua-C8-1,8-ANP), which contain a nitro group on the pyrene ring covalently linked to the guanine C8, are more mutagenic than the major 1-NP adduct, N-(guanin-8-yl)-1-aminopyrene (Gua-C8-AP). In order to address this, we have compared the mutation frequency of the three guanine C8 adducts, Gua-C8-AP, Gua-C8-1,6-ANP, and Gua-C8-1,8-ANP in a CGCG*CG sequence. Single-stranded M13mp7L2 vectors containing these adducts and a control were constructed and replicated in Escherichia coli. A remarkable difference in the induced CpG deletion frequency between these adducts was noted. In repair-competent cells the 1-NP adduct induced 1.7% CpG deletions without SOS, whereas the 1,6- and 1,8-DNP adducts induced 6.8 and 10.0% two-base deletions, respectively. With SOS, CpG deletions increased up to 1.9, 11.1, and 15.1% by 1-NP, 1,6-, and 1,8-DNP adducts, respectively. This result unequivocally established that DNP adducts are more mutagenic than the 1-NP adduct in the repetitive CpG sequence. In each case the mutation frequency was significantly increased in a mutS strain, which is impaired in methyl-directed mismatch repair, and a dnaQ strain, which carries a defect in proofreading activity of the DNA polymerase III. Modeling studies showed that the nitro group on the pyrene ring at the 8-position can provide additional stabilization to the two-nucleotide extrahelical loop in the promutagenic slipped frameshift intermediate through its added hydrogen-bonding capability. This could account for the increase in CpG deletions in the M13 vector with the nitro-containing adducts compared with the Gua-C8-AP adduct itself.


Subject(s)
CpG Islands/genetics , DNA Adducts/genetics , Mutagenesis , Mutagens/chemistry , Pyrenes/chemistry , DNA Adducts/chemistry , DNA Repair , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , Escherichia coli/genetics , Genetic Vectors , Hydrogen Bonding , Models, Molecular , Molecular Structure , Nucleic Acid Conformation , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...