Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Chem Sci ; 15(18): 6763-6769, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38725493

ABSTRACT

Molecular photoswitches are potent tools to construct dynamic functional systems and responsive materials that can be controlled in a non-invasive manner. As P-type photoswitches, stiff-stilbenes attract increasing interest, owing to their superiority in quantum yield, significant geometric differences between isomers, excellent thermostability and robust switching behavior. Nevertheless, the UV-light-triggered photoisomerization of stiff-stilbenes has been a main drawback for decades as UV light is potentially harmful and has low penetration depth. Here, we provided a series of para-formylated stiff-stilbenes by Rieche ortho-formylation to achieve all-visible-light-responsiveness. Additional phenolic groups provide access to late-stage chemical modification facilitating design of molecules responsive to visible light. Remarkably, the photoisomerization of aldehyde-appended stiff-stilbenes could be fully manipulated using visible light, accompanied by a high photostationary state (PSS) distribution. These features render them excellent candidates for future visible-light-controllable smart materials and dynamic systems.

2.
Angew Chem Int Ed Engl ; 63(21): e202319321, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38511339

ABSTRACT

Photoclick reactions combine the advantages offered by light-driven processes and classical click chemistry and have found applications ranging from surface functionalization, polymer conjugation, photo-crosslinking, and protein labeling. Despite these advances, the dependency of most of the photoclick reactions on UV light poses a severe obstacle for their general implementation, as this light can be absorbed by other molecules in the system resulting in their degradation or unwanted reactivity. However, the development of a simple and efficient system to achieve bathochromically shifted photoclick transformations remains challenging. Here, we introduce triplet-triplet energy transfer as a fast and selective way to enable visible light-induced photoclick reactions. Specifically, we show that 9,10-phenanthrenequinones (PQs) can efficiently react with electron-rich alkenes (ERAs) in the presence of a catalytic amount (as little as 5 mol %) of photosensitizers. The photocycloaddition reaction can be achieved under green (530 nm) or orange (590 nm) light irradiation, representing a bathochromic shift of over 100 nm as compared to the classical PQ-ERAs system. Furthermore, by combining appropriate reactants, we establish an orthogonal, blue and green light-induced photoclick reaction system in which the product distribution can be precisely controlled by the choice of the color of light.

3.
4.
Chem Sci ; 14(32): 8458-8465, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37592992

ABSTRACT

We present a class of visible-light-driven molecular motors based on barbituric acid. Due to a serendipitous reactivity we observed during their synthesis, these motors possess a tertiary stereogenic centre on the upper half, characterised by a hydroxy group. Using a combination of femto- and nanosecond transient absorption spectroscopy, molecular dynamics simulations and low-temperature 1H NMR experiments we found that these motors operate similarly to push-pull second-generation overcrowded alkene-based molecular motors. Interestingly, the hydroxy group at the stereocentre enables a hydrogen bond with the carbonyl groups of the barbituric acid lower half, which drives a sub-picosecond excited-state isomerisation, as observed spectroscopically. Computational simulations predict an excited state "lasso" mechanism where the intramolecular hydrogen bond pulls the molecule towards the formation of the metastable state, with a high predicted quantum yield of isomerisation (68%) in gas phase.

5.
Chem Sci ; 14(27): 7465-7474, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37449069

ABSTRACT

The light-induced photocycloaddition of 9,10-phenanthrenequinone (PQ) with electron-rich alkenes (ERA), known as the PQ-ERA reaction, is a highly attractive photoclick reaction characterized by high selectivity, external non-invasive control with light and biocompatibility. The conventionally used PQ compounds show limited reactivity, which hinders the overall efficiency of the PQ-ERA reaction. To address this issue, we present in this study a simple strategy to boost the reactivity of the PQ triplet state to further enhance the efficiency of the PQ-ERA reaction, enabled by thiophene substitution at the 3-position of the PQ scaffold. Our investigations show that this substitution pattern significantly increases the population of the reactive triplet state (3ππ*) during excitation of 3-thiophene PQs. This results in a superb photoreaction quantum yield (ΦP, up to 98%), high second order rate constants (k2, up to 1974 M-1 s-1), and notable oxygen tolerance for the PQ-ERA reaction system. These results have been supported by both experimental transient absorption data and theoretical calculations, providing further evidence for the effectiveness of this strategy, and offering fine prospects for fast and efficient photoclick transformations.

6.
ACS Appl Mater Interfaces ; 13(43): 51790-51798, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34669380

ABSTRACT

Extreme ultraviolet (EUV) lithography uses 13.5 nm light to reach the sub-20 nm resolution. However, the process of pattern formation induced by this high-energy light is not well-understood. In this work, we provide an inorganic EUV photoresist with fluorescence properties by introducing a carbazole derivative as a ligand, and we study its effect on the patterning process. Using the fluorescence properties, changes in the emission of the material after EUV exposure could be tracked by means of spectroscopy and microscopy. The resist sensitivity was substantially reduced by the incorporation of the carbazole benzoate ligands, which is attributed to hole trapping and steric hindrance. After EUV irradiation of the resist films, infrared, UV-visible absorption, and fluorescence spectroscopies showed that the carbazole units were still mostly intact, although their fluorescence intensity was lowered. Our work shows that fluorescent labeling can provide relevant mechanistic insights in the patterning process of resists, potentially with a molecular resolution.

7.
Angew Chem Int Ed Engl ; 60(48): 25290-25295, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34609785

ABSTRACT

Imines are photoaddressable motifs useful in the development of new generations of molecular switches, but their operation with low-energy photons and control over isomer stability remain challenging. Based on a computational design, we developed phenylimino indolinone (PIO), a green-light-addressable T-type photoswitch showing negative photochromism. The isomerization behavior of this photoactuator of the iminothioindoxyl (ITI) class was studied using time-resolved spectroscopies on time scales from femtoseconds to the steady state and by quantum-chemical analyses. The understanding of the isomerization properties and substituent effects governing these photoswitches opens new avenues for the development of novel T-type visible-light-addressable photoactuators based on C=N bonds.

8.
Langmuir ; 35(37): 12079-12090, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31389710

ABSTRACT

The biological application of ruthenium anticancer prodrugs for photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) is restricted by the need to use poorly penetrating high-energy photons for their activation, i.e., typically blue or green light. Upconverting nanoparticles (UCNPs), which produce high-energy light under near-infrared (NIR) excitation, may solve this issue, provided that the coupling between the UCNP surface and the Ru prodrug is optimized to produce stable nanoconjugates with efficient energy transfer from the UCNP to the ruthenium complex. Herein, we report on the synthesis and photochemistry of the two structurally related ruthenium(II) polypyridyl complexes [Ru(bpy)2(5)](PF6)2 ([1](PF6)2) and [Ru(bpy)2(6)](PF6)2 ([2](PF6)2), where bpy = 2,2-bipyridine, 5 is 5,6-bis(dodecyloxy)-2,9-dimethyl-1,10-phenanthroline, and 6 is 5,6-bis(dodecyloxy)-1,10-phenanthroline. [1](PF6)2 is photolabile as a result of the steric strain induced by ligand 5, but the irradiation of [1](PF6)2 in solution leads to the nonselective and slow photosubstitution of one of its three ligands, making it a poor PACT compound. On the other hand, [2](PF6)2 is an efficient and photostable PDT photosensitizer. The water-dispersible, negatively charged nanoconjugate UCNP@lipid/[2] was prepared by the encapsulation of 44 nm diameter NaYF4:Yb3+,Tm3+ UCNPs in a mixture of 1,2-dioleoyl-sn-glycero-3-phosphate and 1,2-dioleoyl-sn-glycero-3-phosphocholine phospholipids, cholesterol, and the amphiphilic complex [2](PF6)2. A nonradiative energy transfer efficiency of 12% between the Tm3+ ions in the UCNP and the Ru2+ acceptor [2]2+ was found using time-resolved emission spectroscopy. Under irradiation with NIR light (969 nm), UCNP@lipid/[2] was found to produce reactive oxygen species (ROS), as judged by the oxidation of the nonspecific ROS probe 2',7'-dichlorodihydrofluorescein (DCFH2-). Determination of the type of ROS produced was precluded by the negative surface charge of the nanoconjugate, which resulted in the electrostatic repulsion of the more specific but also negatively charged 1O2 probe tetrasodium 9,10-anthracenediyl-bis(methylene)dimalonate (Na4(ADMBMA)).

9.
Inorg Chem ; 57(15): 9039-9047, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30027738

ABSTRACT

The diarylethene moiety is one of the most extensively used switches in the field of molecular electronics. Here we report on spectroscopic and quantum chemical studies of two diarylethene-based compounds with a non- C3-symmetric triethynyl terthiophene core symmetrically substituted with RuCp*(dppe) or trimethylsilyl termini. The ethynyl linkers are strong IR markers that we use in time-resolved vibrational spectroscopic studies to get insight into the character and dynamics of the electronically excited states of these compounds on the picosecond to nanosecond time scale. In combination with electronic transient absorption studies and DFT calculations, our studies show that the conjugation of the non- C3-symmetric triethynyl terthiophene system in the excited state strongly affects one of the thiophene rings involved in the ring closure. As a result, cyclization of the otherwise photochromic 3,3″-dimethyl-2,2':3',2″-terthiophene core is inhibited. Instead, the photoexcited compounds undergo intersystem crossing to a long-lived triplet excited state from which they convert back to the ground state.

10.
Chem Commun (Camb) ; 51(7): 1375-8, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25486881

ABSTRACT

We demonstrate that a biphenyl-bridged imidazole dimer exhibits fast photochromism with a thermal recovery time constant of ∼100 ns, which is the fastest thermal back reaction in all reported imidazole dimers. Sub-ps transient absorption spectroscopy reveals that the generation process of the colored species occurs within 1 ps.

SELECTION OF CITATIONS
SEARCH DETAIL
...