Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 218: 116959, 2020 09.
Article in English | MEDLINE | ID: mdl-32442638

ABSTRACT

Neuroimaging evidence suggests that the aging brain relies on a more distributed set of cortical regions than younger adults in order to maintain successful levels of performance during demanding cognitive tasks. However, it remains unclear how task demands give rise to this age-related expansion in cortical networks. To investigate this issue, functional magnetic resonance imaging was used to measure univariate activity, network connectivity, and cognitive performance in younger and older adults during a working memory (WM) task. Here, individuals performed a WM task in which they held letters online while reordering them alphabetically. WM load was titrated to obtain four individualized difficulty levels with different set sizes. Network integration-defined as the ratio of within-versus between-network connectivity-was linked to individual differences in WM capacity. The study yielded three main findings. First, as task difficulty increased, network integration decreased in younger adults, whereas it increased in older adults. Second, age-related increases in network integration were driven by increases in right hemisphere connectivity to both left and right cortical regions, a finding that helps to reconcile existing theories of compensatory recruitment in aging. Lastly, older adults with higher WM capacity demonstrated higher levels of network integration in the most difficult task condition. These results shed light on the mechanisms of age-related network reorganization by demonstrating that changes in network connectivity may act as an adaptive form of compensation, with older adults recruiting a more distributed cortical network as task demands increase.


Subject(s)
Aging/physiology , Aging/psychology , Memory, Short-Term/physiology , Nerve Net/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Brain Mapping , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cognition/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Neuroimaging , Psychomotor Performance/physiology , Verbal Behavior , Young Adult
2.
PLoS One ; 14(3): e0213707, 2019.
Article in English | MEDLINE | ID: mdl-30901345

ABSTRACT

Working memory is the ability to perform mental operations on information that is stored in a flexible, limited capacity buffer. The ability to manipulate information in working memory is central to many aspects of human cognition, but also declines with healthy aging. Given the profound importance of such working memory manipulation abilities, there is a concerted effort towards developing approaches to improve them. The current study tested the capacity to enhance working memory manipulation with online repetitive transcranial magnetic stimulation in healthy young and older adults. Online high frequency (5Hz) repetitive transcranial magnetic stimulation was applied over the left dorsolateral prefrontal cortex to test the hypothesis that active repetitive transcranial magnetic stimulation would lead to significant improvements in memory recall accuracy compared to sham stimulation, and that these effects would be most pronounced in working memory manipulation conditions with the highest cognitive demand in both young and older adults. Repetitive transcranial magnetic stimulation was applied while participants were performing a delayed response alphabetization task with three individually-titrated levels of difficulty. The left dorsolateral prefrontal cortex was identified by combining electric field modeling to individualized functional magnetic resonance imaging activation maps and was targeted during the experiment using stereotactic neuronavigation with real-time robotic guidance, allowing optimal coil placement during the stimulation. As no accuracy differences were found between young and older adults, the results from both groups were collapsed. Subsequent analyses revealed that active stimulation significantly increased accuracy relative to sham stimulation, but only for the hardest condition. These results point towards further investigation of repetitive transcranial magnetic stimulation for memory enhancement focusing on high difficulty conditions as those most likely to exhibit benefits.


Subject(s)
Memory, Short-Term/physiology , Prefrontal Cortex/physiology , Transcranial Magnetic Stimulation/methods , Adult , Aged , Aged, 80 and over , Humans , Magnetic Resonance Imaging , Middle Aged , Neuropsychological Tests , Single-Blind Method , Young Adult
3.
Sci Rep ; 8(1): 17827, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30546042

ABSTRACT

Working memory (WM) is assumed to consist of a process that sustains memory representations in an active state (maintenance) and a process that operates on these activated representations (manipulation). We examined evidence for two distinct, concurrent cognitive functions supporting maintenance and manipulation abilities by testing brain activity as participants performed a WM alphabetization task. Maintenance was investigated by varying the number of letters held in WM and manipulation by varying the number of moves required to sort the list alphabetically. We found that both maintenance and manipulation demand had significant effects on behavior that were associated with different cortical regions: maintenance was associated with bilateral prefrontal and left parietal cortex, and manipulation with right parietal activity, a link that is consistent with the role of parietal cortex in symbolic computations. Both structural and functional architecture of these systems suggested that these cognitive functions are supported by two dissociable brain networks. Critically, maintenance and manipulation functional networks became increasingly segregated with increasing demand, an effect that was positively associated with individual WM ability. These results provide evidence that network segregation may act as a protective mechanism to enable successful performance under increasing WM demand.


Subject(s)
Memory, Short-Term/physiology , Nerve Net/physiology , Parietal Lobe/physiology , Adolescent , Adult , Brain Mapping , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...