Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20225052

ABSTRACT

BackgroundIt is currently unclear whether SARS-CoV-2 re-infection will remain a rare event, only occurring in individuals who fail to mount an effective immune response, or whether it will occur more frequently when humoral immunity wanes following primary infection. MethodsA case of re-infection was observed in a Belgian nosocomial outbreak involving 3 patients and 2 health care workers. To distinguish re-infection from persistent infection and detect potential transmission clusters, whole genome sequencing was performed on nasopharyngeal swabs of all individuals including the re-infection cases first episode. IgA, IgM, and IgG and neutralizing antibody responses were quantified in serum of all individuals, and viral infectiousness was measured in the swabs of the reinfection case. ResultsRe-infection was confirmed in a young, immunocompetent health care worker as viral genomes derived from the first and second episode belonged to different SARS-CoV-2 clades. The symptomatic re-infection occurred after an interval of 185 days, despite the development of an effective humoral immune response following symptomatic primary infection. The second episode, however, was milder and characterized by a fast rise in serum IgG and neutralizing antibodies. Although contact tracing and virus culture remained inconclusive, the health care worker formed a transmission cluster with 3 patients and showed evidence of virus replication but not of neutralizing antibodies in her nasopharyngeal swabs. ConclusionIf this case is representative of most Covid-19 patients, long-lived protective immunity against SARS-CoV-2 might not be likely.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20161943

ABSTRACT

Large-scale serosurveillance of severe acute respiratory syndrome coronavirus type 2 (SARS- CoV-2) will only be possible if serological tests are sufficiently reliable, rapid and inexpensive. Current assays are either labour-intensive and require specialised facilities (e.g. virus neutralization assays), or expensive with suboptimal specificity (e.g. commercial ELISAs). Bead-based assays offer a cost-effective alternative and allow for multiplexing to test for antibodies of other pathogens. Here, we compare the performance of four antigens for the detection of SARS-CoV-2 specific IgG antibodies in a panel of sera that includes both severe (n=40) and mild (n=52) cases, using a neutralization and a Luminex bead-based assay. While we show that neutralising antibody levels are significantly lower in mild than in severe cases, we demonstrate that a combination of recombinant nucleocapsid protein (NP), receptor- binding domain (RBD) and the whole spike protein (S1S2) results in a highly sensitive (96%) and specific (99%) bead-based assay that can detect IgG antibodies in both groups. Although S1-specific IgG levels correlate most strongly with neutralizing antibody levels, they fall below the detection threshold in 10% of the cases in our Luminex assay. In conclusion, our data supports the use of RBD, NP and S1S2 for the development of SARS-CoV-2 serological bead- based assays. Finally, we argue that low antibody levels in mild/asymptomatic cases might complicate the epidemiological assessment of large-scale surveillance studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...