Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 84(8): 1422-1441.e14, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38521067

ABSTRACT

The topological state of chromosomes determines their mechanical properties, dynamics, and function. Recent work indicated that interphase chromosomes are largely free of entanglements. Here, we use Hi-C, polymer simulations, and multi-contact 3C and find that, by contrast, mitotic chromosomes are self-entangled. We explore how a mitotic self-entangled state is converted into an unentangled interphase state during mitotic exit. Most mitotic entanglements are removed during anaphase/telophase, with remaining ones removed during early G1, in a topoisomerase-II-dependent process. Polymer models suggest a two-stage disentanglement pathway: first, decondensation of mitotic chromosomes with remaining condensin loops produces entropic forces that bias topoisomerase II activity toward decatenation. At the second stage, the loops are released, and the formation of new entanglements is prevented by lower topoisomerase II activity, allowing the establishment of unentangled and territorial G1 chromosomes. When mitotic entanglements are not removed in experiments and models, a normal interphase state cannot be acquired.


Subject(s)
Chromosomes , DNA Topoisomerases, Type II , DNA Topoisomerases, Type II/genetics , Chromosomes/genetics , Mitosis/genetics , Interphase/genetics , Polymers
2.
Nat Cell Biol ; 24(3): 327-339, 2022 03.
Article in English | MEDLINE | ID: mdl-35177821

ABSTRACT

Despite the well-established role of nuclear organization in the regulation of gene expression, little is known about the reverse: how transcription shapes the spatial organization of the genome. Owing to the small sizes of most previously studied genes and the limited resolution of microscopy, the structure and spatial arrangement of a single transcribed gene are still poorly understood. Here we study several long highly expressed genes and demonstrate that they form open-ended transcription loops with polymerases moving along the loops and carrying nascent RNAs. Transcription loops can span across micrometres, resembling lampbrush loops and polytene puffs. The extension and shape of transcription loops suggest their intrinsic stiffness, which we attribute to decoration with multiple voluminous nascent ribonucleoproteins. Our data contradict the model of transcription factories and suggest that although microscopically resolvable transcription loops are specific for long highly expressed genes, the mechanisms underlying their formation could represent a general aspect of eukaryotic transcription.


Subject(s)
Chromosomes , Transcription, Genetic , Chromosomes/metabolism , Eukaryota/genetics , Eukaryota/metabolism , RNA , Ribonucleoproteins/genetics
3.
Trends Biochem Sci ; 45(5): 385-396, 2020 05.
Article in English | MEDLINE | ID: mdl-32311333

ABSTRACT

Active and inactive chromatin are spatially separated in the nucleus. In Hi-C data, this is reflected by the formation of compartments, whose interactions form a characteristic checkerboard pattern in chromatin interaction maps. Only recently have the mechanisms that drive this separation come into view. Here, we discuss new insights into these mechanisms and possible functions in genome regulation. Compartmentalization can be understood as a microphase-segregated block co-polymer. Microphase separation can be facilitated by chromatin factors that associate with compartment domains, and that can engage in liquid-liquid phase separation to form subnuclear bodies, as well as by acting as bridging factors between polymer sections. We then discuss how a spatially segregated state of the genome can contribute to gene regulation, and highlight experimental challenges for testing these structure-function relationships.


Subject(s)
Cell Compartmentation , Chromosomes , Transcription, Genetic
4.
Genetics ; 205(1): 113-124, 2017 01.
Article in English | MEDLINE | ID: mdl-27794026

ABSTRACT

The incorporation of histone variants into nucleosomes can alter chromatin-based processes. CENP-A is the histone H3 variant found exclusively at centromeres that serves as an epigenetic mark for centromere identity and is required for kinetochore assembly. CENP-A mislocalization to ectopic sites appears to contribute to genomic instability, transcriptional misregulation, and tumorigenesis, so mechanisms exist to ensure its exclusive localization to centromeres. One conserved process is proteolysis, which is mediated by the Psh1 E3 ubiquitin ligase in Saccharomyces cerevisiae (budding yeast). To determine whether there are features of the CENP-A nucleosome that facilitate proteolysis, we performed a genetic screen to identify histone H4 residues that regulate CENP-ACse4 degradation. We found that H4-R36 is a key residue that promotes the interaction between CENP-ACse4 and Psh1 Consistent with this, CENP-ACse4 protein levels are stabilized in H4-R36A mutant cells and CENP-ACse4 is enriched in the euchromatin. We propose that the defects in CENP-ACse4 proteolysis may be related to changes in Psh1 localization, as Psh1 becomes enriched at some 3' intergenic regions in H4-R36A mutant cells. Together, these data reveal a key residue in histone H4 that is important for efficient CENP-ACse4 degradation, likely by facilitating the interaction between Psh1 and CENP-ACse4.


Subject(s)
Autoantigens/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitin-Protein Ligases/genetics , Autoantigens/genetics , Centromere Protein A , Chromatin/metabolism , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Euchromatin , Histones/genetics , Kinetochores/metabolism , Nucleosomes/metabolism , Protein Binding , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
5.
PLoS Genet ; 12(3): e1005930, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26982580

ABSTRACT

The exclusive localization of the histone H3 variant CENP-A to centromeres is essential for accurate chromosome segregation. Ubiquitin-mediated proteolysis helps to ensure that CENP-A does not mislocalize to euchromatin, which can lead to genomic instability. Consistent with this, overexpression of the budding yeast CENP-A(Cse4) is lethal in cells lacking Psh1, the E3 ubiquitin ligase that targets CENP-A(Cse4) for degradation. To identify additional mechanisms that prevent CENP-A(Cse4) misincorporation and lethality, we analyzed the genome-wide mislocalization pattern of overexpressed CENP-A(Cse4) in the presence and absence of Psh1 by chromatin immunoprecipitation followed by high throughput sequencing. We found that ectopic CENP-A(Cse4) is enriched at promoters that contain histone H2A.Z(Htz1) nucleosomes, but that H2A.Z(Htz1) is not required for CENP-A(Cse4) mislocalization. Instead, the INO80 complex, which removes H2A.Z(Htz1) from nucleosomes, promotes the ectopic deposition of CENP-A(Cse4). Transcriptional profiling revealed gene expression changes in the psh1Δ cells overexpressing CENP-A(Cse4). The down-regulated genes are enriched for CENP-A(Cse4) mislocalization to promoters, while the up-regulated genes correlate with those that are also transcriptionally up-regulated in an htz1Δ strain. Together, these data show that regulating centromeric nucleosome localization is not only critical for maintaining centromere function, but also for ensuring accurate promoter function and transcriptional regulation.


Subject(s)
Autoantigens/genetics , Centromere/genetics , Chromosomal Proteins, Non-Histone/genetics , Histones/genetics , Nucleosomes/genetics , Saccharomyces cerevisiae Proteins/genetics , Centromere Protein A , DNA-Binding Proteins/genetics , Euchromatin/genetics , Gene Expression Regulation, Fungal , Nucleosomes/metabolism , Promoter Regions, Genetic , Proteolysis , Saccharomyces cerevisiae/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics
6.
Front Microbiol ; 3: 445, 2012.
Article in English | MEDLINE | ID: mdl-23346081

ABSTRACT

Since the discovery of ammonia-oxidizing archaea (AOA), new questions have arisen about population and community dynamics and potential interactions between AOA and ammonia-oxidizing bacteria (AOB). We investigated the effects of long-term fertilization on AOA and AOB in the Great Sippewissett Marsh, Falmouth, MA, USA to address some of these questions. Sediment samples were collected from low and high marsh habitats in July 2009 from replicate plots that received low (LF), high (HF), and extra high (XF) levels of a mixed NPK fertilizer biweekly during the growing season since 1974. Additional untreated plots were included as controls (C). Terminal restriction fragment length polymorphism analysis of the amoA genes revealed distinct shifts in AOB communities related to fertilization treatment, but the response patterns of AOA were less consistent. Four AOB operational taxonomic units (OTUs) predictably and significantly responded to fertilization, but only one AOA OTU showed a significant pattern. Betaproteobacterial amoA gene sequences within the Nitrosospira-like cluster dominated at C and LF sites, while sequences related to Nitrosomonas spp. dominated at HF and XF sites. We identified some clusters of AOA sequences recovered primarily from high fertilization regimes, but other clusters consisted of sequences recovered from all fertilization treatments, suggesting greater physiological diversity. Surprisingly, fertilization appeared to have little impact on abundance of AOA or AOB. In summary, our data reveal striking patterns for AOA and AOB in response to long-term fertilization, and also suggest a missing link between community composition and abundance and nitrogen processing in the marsh.

SELECTION OF CITATIONS
SEARCH DETAIL
...