Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Food Prot ; 87(7): 100298, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38734415

ABSTRACT

Validation of baking processes for the inactivation of Salmonella is complicated by the combined effects of product heating and drying. The goal of this study was to quantitatively evaluate a previously disseminated approach to validating baking processes utilizing a predictive model developed using only isothermal and single-moisture inactivation data for the initially formulated dough. A simple cracker dough was formulated using flour inoculated with a five-strain cocktail of Salmonella. Side-by-side isothermal and baking experiments were performed to estimate Salmonella inactivation kinetics and to quantify survivors in a dynamic environment, respectively. Isothermal, single-moisture inactivation experiments were performed with cracker dough (water activity, aw = 0.956 ± 0.002; moisture content = 0.50 ± 0.01 dry basis) at three temperatures (56, 60, or 63°C) with ≥6 time intervals. Baking experiments were performed in a convection oven at 177°C with samples pulled every 30 s up to 360 s, with an endpoint product aw (25°C) of 0.45. The Salmonella isothermal, single-moisture inactivation kinetics in cracker dough resulted in D60°C and z-values of 4.6 min and 4.9°C, respectively; this model was then integrated over the dynamic product temperature profiles from the baking experiments. In the baking experiments, an average of 5-log reductions of Salmonella was achieved by 150 s of treatment; however, >100-log reductions were predicted by the dough-based models at that time point. This fail-dangerous overestimation of Salmonella lethality in crackers explicitly demonstrated that single-level moisture-based prediction models are inappropriate for describing inactivation in a process with both dynamic temperature and moisture, and that model-based validations must incorporate moisture/aw. Furthermore, end-users should exercise caution when utilizing unvalidated models to validate preventive control processes.

2.
J Food Prot ; 85(11): 1538-1552, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35723555

ABSTRACT

ABSTRACT: This multi-institutional study assessed the efficacy of Enterococcus faecium NRRL B-2354 as a nonpathogenic Salmonella surrogate for thermal processing of nonfat dry milk powder, peanut butter, almond meal, wheat flour, ground black pepper, and date paste. Each product was analyzed by two laboratories (five independent laboratories total), with the lead laboratory inoculating (E. faecium or a five-strain Salmonella enterica serovar cocktail of Agona, Reading, Tennessee, Mbandaka, and Montevideo) and equilibrating the product to the target water activity before shipping. Both laboratories subjected samples to three isothermal treatments (between 65 and 100°C). A log-linear and Bigelow model was fit to survivor data via one-step regression. On the basis of D80°C values estimated from the combined model, E. faecium was more thermally resistant (P < 0.05) than Salmonella in nonfat dry milk powder (DEf-80°C, 100.2 ± 5.8 min; DSal-80°C, 28.9 ± 1.0 min), peanut butter (DEf-80°C, 133.5 ± 3.1 min; DSal-80°C, 57.6 ± 1.5 min), almond meal (DEf-80°C, 34.2 ± 0.4 min; DSal-80°C, 26.1 ± 0.2 min), ground black pepper (DEf-80°C, 3.2 ± 0.8 min; DSal-80°C, 1.5 ± 0.1 min), and date paste (DEf-80°C, 1.5 ± 0.0 min; DSal-80°C, 0.5 ± 0.0 min). Although the combined laboratory D80°C for E. faecium was lower (P < 0.05) than for Salmonella in wheat flour (DEf-80°C, 9.4 ± 0.1 min; DSal-80°C, 10.1 ± 0.2 min), the difference was ∼7%. The zT values for Salmonella in all products and for E. faecium in milk powder, almond meal, and date paste were not different (P > 0.05) between laboratories. Therefore, this study demonstrated the impact of standardized methodologies on repeatability of microbial inactivation results. Overall, E. faecium NRRL B-2354 was more thermally resistant than Salmonella, which provides support for utilizing E. faecium as a surrogate for validating thermal processing of multiple low-moisture products. However, product composition should always be considered before making that decision.


Subject(s)
Enterococcus faecium , Prunus dulcis , Colony Count, Microbial , Flour , Food Handling/methods , Food Microbiology , Hot Temperature , Powders , Salmonella/physiology , Triticum , Water/analysis
3.
Foods ; 10(9)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34574271

ABSTRACT

The effect of moderate-temperature (≤60 °C) dehydration of plant-based foods on pathogen inactivation is unknown. Here, we model the reduction of E. coli O157:H7 as a function of product-matrix, aw, and temperature under isothermal conditions. Apple, kale, and tofu were each adjusted to aw 0.90, 0.95, or 0.99 and inoculated with an E. coli O157:H7 cocktail, followed by isothermal treatment at 49, 54.5, or 60.0 °C. The decimal reduction time, or D-value, is the time required at a given temperature to achieve a 1 log reduction in the target microorganism. Modified Bigelow-type models were developed to determine D-values which varied by product type and aw level, ranging from 3.0-6.7, 19.3-55.3, and 45.9-257.4 min. The relative impact of aw was product dependent and appeared to have a non-linear impact on D-values. The root mean squared errors of the isothermal-based models ranged from 0.75 to 1.54 log CFU/g. Second, we performed dynamic drying experiments. While the isothermal results suggested significant microbial inactivation might be achieved, the dehydrator studies showed that the combination of low product temperature and decreasing aw in the pilot-scale system provided minimal inactivation. Pilot-scale drying at 60 °C only achieved reductions of 3.1 ± 0.8 log in kale and 0.67 ± 0.66 log in apple after 8 h, and 0.69 ± 0.67 log in tofu after 24 h. This illustrates the potential limitations of dehydration at ≤60 °C as a microbial kill step.

4.
J Food Prot ; 84(9): 1512-1523, 2021 09 01.
Article in English | MEDLINE | ID: mdl-33878152

ABSTRACT

ABSTRACT: Recent revisions to U.S. Department of Agriculture, Food Safety and Inspection Service (FSIS) compliance and safe harbor guidelines for ready-to-eat meat and poultry products addressed process humidity requirements. Given the lack of prior data for impingement-cooked products, the present study was conducted to evaluate the impact of process humidity on Salmonella lethality at the product core and surface and compliance of the results with FSIS lethality performance standards. Whole muscle beef strips, ground beef patties, whole muscle chicken breast fillets, and breaded ground chicken patties were inoculated with an eight-serovar cocktail of Salmonella. Beef and chicken samples were cooked in a pilot-scale moist-air impingement oven to a core temperature of 70.0 and 72.8°C, respectively, immediately quenched in liquid nitrogen, and dissected to obtain core and surface samples. Variables included oven temperature (218 and 232°C), air velocity (0.7 and 2.8 m/s), and oven humidity (0.7, 15, 30, or 70% moisture by volume [%, v/v]). Additional treatments were performed to examine the impact of supplemental critical control processes such as increased endpoint temperature, postoven carryover time, and pre- or postoven steam treatments. Salmonella reductions of >7 log units were reliably achieved in chicken patties regardless of the processing variables; however, none of the treatments reliably ensured >6.5-log reductions of Salmonella in ground beef. A majority of whole-muscle samples failed to meet the required performance lethality when processed at 0.7% (v/v) humidity; however, Salmonella inactivation was significantly improved (P < 0.05) at oven humidities of ≥30% (v/v). Dry oven conditions achieved greater Salmonella lethality at the core than at the surface for multiple products (P < 0.05). The efficacies of minimal and supplemental critical controls were dependent on product, process, and humidity (P < 0.05). Overall, process humidity and product variability should be considered in regulatory requirements and process validations.


Subject(s)
Meat Products , Poultry Products , Animals , Cattle , Colony Count, Microbial , Food Handling , Food Microbiology , Humidity , Meat , Salmonella
5.
J Food Prot ; 83(4): 609-614, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32221564

ABSTRACT

ABSTRACT: Isothermal inactivation experiments often are used to investigate the thermal resistance of pathogens, such as Salmonella, in foods; however, little is known about the reproducibility of such experimental methodologies. The objective of this study was to quantify the reproducibility of Salmonella isothermal resistance results via a six-laboratory comparison. Inoculation was performed at a single location and then distributed to each laboratory for isothermal analysis. Salmonella Agona 447967 was inoculated into oat flour, re-equilibrated to a water activity (aw) of 0.45, and then packaged and distributed to each laboratory. Before conducting the inactivation trials, each laboratory was required to verify the inoculated product's aw, enumerate Salmonella population levels, and verify that the isothermal treatment medium was at the target temperature (80°C). All laboratories were required to process at least three replications, collect at least six sample time points with three subsamples at each sampling point, enumerate survivors using an identical plating methodology and media, and verify that the temperature did not substantially change during isothermal treatment. The log-linear model was fit to the Salmonella survivor data, and the resultant D-values were statistically compared via Welch's t test (α = 0.05). Two significant differences in thermal inactivation kinetics were identified as potentially resulting from suspected methodology deviations. Two of the inoculated batches distributed for analysis yielded significantly lower D-values, which likely resulted from a deviation in the inoculation procedures. One laboratory yielded significantly lower D-values, which was likely the result of temperature deviations. Overall, excluding the D-values resulting from deviations, the inactivation results were reproducible, yielding D-values of 30.2 ± 3 min. These results indicate that isothermal inactivation results can be reproducible but that even minor methodology deviations can substantially affect measured Salmonella thermal resistance.


Subject(s)
Food Handling/methods , Food Microbiology , Hot Temperature , Salmonella/growth & development , Colony Count, Microbial , Food Contamination/analysis , Reproducibility of Results
6.
J Food Prot ; 83(7): 1125-1136, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32084255

ABSTRACT

ABSTRACT: Process control validations require knowledge of the resistance of the pathogen(s) of concern to the target treatment and, in some cases, the relative resistance of surrogate organisms. Selected strains of Escherichia coli O157:H7 (five strains), Listeria monocytogenes (five strains), and Salmonella enterica (five strains) as well as Salmonella Enteritidis phage type (PT) 30 and nonpathogenic Enterococcus faecium NRRL B-2354 were inoculated separately (as individual strains) onto inshell pistachios. The thermal tolerance of each strain was compared via treatment of inoculated pistachios to hot oil (121°C) or hot water (80°C) for 1 min. Survivor curves in hot oil or hot water (0.5 to 6 min, n = 6 to 15) were determined for one or two of the most resistant strains of each pathogen, as well as E. faecium NRRL B-2354 and Salmonella Enteritidis PT 30, and the Weibull model was fit to the data. A pilot-scale air-impingement oven was used to compare the thermal tolerance of E. faecium NRRL B-2354 and Salmonella Enteritidis PT 30 on pistachios with or without a brining pretreatment and at either dry (no steam) or 30% humidity (v/v) oven conditions. No significant difference in the time to a 4-log reduction in hot oil or hot water was predicted for any of the strains evaluated, on the basis of the 95% confidence interval. In the pilot-scale oven, E. faecium NRRL B-2354 was more thermally resistant than Salmonella in a broad set of differing treatments, treatment times, and temperatures. Salmonella is a suitable target pathogen of concern in pistachios for thermal processes because no other pathogen tested was more thermally resistant under the conditions evaluated. E. faecium NRRL B-2354 was at least as thermally resistant as Salmonella under all conditions evaluated, making it a good potential surrogate for Salmonella on pistachios.


Subject(s)
Enterococcus faecium , Escherichia coli O157 , Listeria monocytogenes , Pistacia , Colony Count, Microbial , Food Microbiology , Hot Temperature
7.
J Food Prot ; 81(9): 1411-1417, 2018 09.
Article in English | MEDLINE | ID: mdl-30059253

ABSTRACT

Salmonella can survive in low-moisture, high-protein, and high-fat foods for several years. Despite nationwide outbreaks and recalls due to the presence of Salmonella in low-moisture foods, information on thermal inactivation of Salmonella in these products is limited. This project evaluated the impact of water activity (aw), temperature, and food composition on thermal inactivation of Salmonella enterica serovar Agona in defined high-protein and high-fat model food matrices. Each matrix was inoculated with Salmonella Agona and adjusted to obtain a target aw, ranging from 0.50 to 0.98. Samples were packed into aluminum test cells and heated (52 to 90°C) under isothermal conditions. Survival of Salmonella Agona was detected on tryptic soy agar with 0.6% yeast extract. Complex influences by food composition, aw, and temperature resulted in significantly different ( P < 0.05) thermal resistance of Salmonella for the conditions tested. It was estimated that the same point temperatures at which the D-values of the two matrices at each aw (0.63, 0.73, 0.81, and 0.90) were identical were 79.48, 71.28, 69.62, and 38.42°C, respectively. Above these temperatures, the D-values in high-protein matrices were larger than the D-values in high-fat matrices at each aw. Below these temperatures, the inverse relationship was observed. A correlation between temperature and aw existed on the basis of the level of fat or protein in the food, showing that these compositional factors must be accounted for when predicating thermal inactivation of Salmonella in foods.


Subject(s)
Food Microbiology , Hot Temperature , Salmonella enterica , Water , Colony Count, Microbial , Salmonella , Salmonella enterica/growth & development , Water/analysis
8.
J Food Prot ; 81(4): 520-527, 2018 04.
Article in English | MEDLINE | ID: mdl-29513105

ABSTRACT

Ready-to-eat foods based on dried partially sprouted seeds have been associated with foodborne salmonellosis. Whereas research has focused on the potential for Salmonella initially present in or on seeds to grow and survive during fresh sprout production, little is known about the potential for growth and survival of Salmonella associated with seeds that have been partially sprouted and dried. The goal of this study was to determine the growth of Salmonella during soaking for partial germination of pumpkin, sunflower, and chia seeds and subsequent survival during drying and storage. Pumpkin, sunflower, and chia seeds were inoculated with a four-serotype Salmonella cocktail by the dry transfer method and were soaked in sterile water at 25 or 37°C for 24 h. During the soaking period, Salmonella exhibited growth rates of 0.37 ± 0.26, 0.27 ± 0.12, and 0.45 ± 0.19 log CFU/h at 25°C and 0.94 ± 0.44, 1.04 ± 0.84, and 0.73 ± 0.36 log CFU/h at 37°C for chia, pumpkin, and sunflower seeds, respectively. Soaked seeds were drained and dried at 25, 51, and 60°C. Drying resulted in >5 log CFU/g loss at both 51 and 60°C and ∼3 log CFU/g loss at 25°C on partially sprouted pumpkin and sunflower seeds. There was no decrease in Salmonella during drying of chia seeds at 25°C, and only drying at 60°C provided losses >5 log CFU/g. Dried seeds were stored at 37 and 45°C at 15 and 76% relative humidity (RH) levels. The combination of temperature and RH exerted a stronger effect than either factor alone, such that rates at which Salmonella decreased generally followed this order: 37°C at 15% RH < 45°C at 15% RH < 37°C at 76% RH < 45°C at 76% RH for all seeds tested. Rates differed based on seed type, with chia seeds and chia seed powder having the smallest rate of Salmonella decrease, followed by sunflower and pumpkin seeds. Drying at higher temperatures (50 and 61°C) or storing at elevated temperature and humidity (45°C and 76% RH) resulted in significantly different rates of Salmonella decrease.


Subject(s)
Cucurbita , Helianthus , Salmonella , Seeds , Colony Count, Microbial , Desiccation , Food Microbiology , Germination , Hot Temperature , Humans , Salmonella/growth & development , Salmonella Food Poisoning , Salmonella Infections , Seeds/microbiology , Serogroup , Temperature , Water
9.
J Food Prot ; 80(8): 1328-1336, 2017 08.
Article in English | MEDLINE | ID: mdl-28708030

ABSTRACT

Cut produce continues to constitute a significant portion of the fresh fruit and vegetables sold directly to consumers. As such, the safety of these items during storage, handling, and display remains a concern. Cut tomatoes, cut leafy greens, and cut melons, which have been studied in relation to their ability to support pathogen growth, have been specifically identified as needing temperature control for safety. Data are needed on the growth behavior of foodborne pathogens in other types of cut produce items that are commonly offered for retail purchase and are potentially held without temperature control. This study assessed the survival and growth of Listeria monocytogenes in cut produce items that are commonly offered for retail purchase, specifically broccoli, green and red bell peppers, yellow onions, canned green and black olives, fresh green olives, cantaloupe flesh and rind, avocado pulp, cucumbers, and button mushrooms. The survival of L. monocytogenes strains representing serotypes 1/2a, 1/2b, and 4b was determined on the cut produce items for each strain individually at 5, 10, and 25°C for up to 720 h. The modified Baranyi model was used to determine the growth kinetics (the maximum growth rates and maximum population increases) in the L. monocytogenes populations. The products that supported the most rapid growth of L. monocytogenes, considering the fastest growth and resulting population levels, were cantaloupe flesh and avocado pulp. When stored at 25°C, the maximum growth rates for these products were 0.093 to 0.138 log CFU/g/h and 0.130 to 0.193 log CFU/g/h, respectively, depending on the strain. Green olives and broccoli did not support growth at any temperature. These results can be used to inform discussions surrounding whether specific time and temperature storage conditions should be recommended for additional cut produce items.


Subject(s)
Food Contamination/prevention & control , Food Microbiology , Listeria monocytogenes/growth & development , Vegetables/microbiology , Colony Count, Microbial , Cucumis melo/microbiology , Food Handling , Humans , Kinetics , Temperature
10.
J Food Prot ; 80(2): 338-344, 2017 02.
Article in English | MEDLINE | ID: mdl-28221981

ABSTRACT

Inoculation of a food product for use in subsequent validation studies typically makes use of a high concentration cocktail of microorganisms suspended in aqueous media. However, this inoculation method may prove difficult particularly when the food product is a low-moisture food containing antimicrobial compounds, such as some dried spices. In this study, a dry transfer method for inoculation of clove powder, oregano leaves, ginger powder, and ground black pepper with a five-serovar cocktail of Salmonella was developed and compared with a traditional aqueous inoculation procedure. Spices were inoculated at three levels, 10, 8, and 6 log CFU/g, by using both an aqueous suspension of Salmonella and a dry transfer of Salmonella from previously inoculated silica beads. At the highest inoculation level, the dry transfer method resulted in a significantly higher microbial load (P < 0.05) for ground cloves and oregano, but not for ginger and ground black pepper. At the intermediate inoculation level, differences were apparent only for ginger and black pepper. Inoculation levels of 6 log CFU/g resulted in recoveries below detection limits for both methods of inoculation. Additional examination on the survival of Salmonella on silica beads after inoculation and in clove powder after dry transfer from silica beads showed linear rates of decline, with a rate of -0.011 log CFU/g/day for beads and -0.015 log CFU/g/day for clove powder. The results suggest that dry transfer of Salmonella via inoculated silica beads is a viable alternative when traditional aqueous inoculation is not feasible.


Subject(s)
Colony Count, Microbial , Spices , Anti-Infective Agents , Food Microbiology , Piper nigrum , Salmonella
11.
J Food Prot ; 79(7): 1089-96, 2016 07.
Article in English | MEDLINE | ID: mdl-27357027

ABSTRACT

Sublethal heating, which can occur during slow cooking of meat products, is known to induce increased thermal resistance in Salmonella. However, very few studies have addressed the kinetics of this response. Although several recent studies have reported improved thermal inactivation models that include the effect of prior sublethal history on subsequent thermal resistance, none of these models were based on cellular-level responses to sublethal thermal stress. The goal of this study was to determine whether a nonlinear model could accurately portray the response of Salmonella to heat stress induced by prolonged exposure to sublethal temperatures. To accomplish this, stationary-phase Salmonella Montevideo cultures were subjected to various heating profiles (held at either 40 or 45°C for 0, 5, 10, 15, 30, 60, 90, 180, or 240 min) using a PCR thermal cycler. Differential plating on selective and nonselective media was used to confirm the presence of cellular injury. Reverse transcription quantitative PCR was used to screen the transcript levels of six heat stress-related genes to find candidate genes for nonlinear modeling. Injury was detected in populations of Salmonella held at 45°C for 30, 60, and 90 min and at 40°C for 0, 5, and 90 min (P < 0.05), whereas no significant injury was found at 180 and 240 min (P > 0.05). The transcript levels of ibpA, which codes for a small heat shock protein associated with the ClpB and DnaK-DnaJ-GrpE chaperone systems, showed the greatest increase relative to the transcript levels at 0 min, which was significant at 5, 10, 15, 30, 60, 90, and 180 min at 45°C and at 5, 10, 15, 30, 60, and 90 min at 40°C (P < 0.05). Using ibpA transcript levels as an indicator of adaptation to thermal stress, a nonlinear model for sublethal injury is proposed. The use of variables indicating the physiological state of the pathogen during stress has the potential to increase the accuracy of thermal inactivation models that must account for prolonged exposure to sublethal temperatures.


Subject(s)
Hot Temperature , Salmonella enterica , Colony Count, Microbial , Meat Products , Nonlinear Dynamics
12.
J Food Prot ; 79(7): 1097-106, 2016 07.
Article in English | MEDLINE | ID: mdl-27357028

ABSTRACT

Isothermal inactivation studies are commonly used to quantify thermal inactivation kinetics of bacteria. Meta-analyses and comparisons utilizing results from multiple sources have revealed large variations in reported thermal resistance parameters for Salmonella, even when in similar food materials. Different laboratory or regression methodologies likely are the source of methodology-specific artifacts influencing the estimated parameters; however, such effects have not been quantified. The objective of this study was to evaluate the effects of laboratory and regression methodologies on thermal inactivation data generation, interpretation, modeling, and inherent error, based on data generated in two independent laboratories. The overall experimental design consisted of a cross-laboratory comparison using two independent laboratories (Michigan State University and U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center [ERRC] laboratories), both conducting isothermal Salmonella inactivation studies (55, 60, 62°C) in ground beef, and each using two methodologies reported in prior studies. Two primary models (log-linear and Weibull) with one secondary model (Bigelow) were fitted to the resultant data using three regression methodologies (two two-step regressions and a one-step regression). Results indicated that laboratory methodology impacted the estimated D60°C- and z-values (α = 0.05), with the ERRC methodology yielding parameter estimates ∼25% larger than the Michigan State University methodology, regardless of the laboratory. Regression methodology also impacted the model and parameter error estimates. Two-step regressions yielded root mean square error values on average 40% larger than the one-step regressions. The Akaike Information Criterion indicated the Weibull as the more correct model in most cases; however, caution should be used to confirm model robustness in application to real-world data. Overall, the results suggested that laboratory and regression methodologies have a large influence on resultant data and the subsequent estimation of thermal resistance parameters.


Subject(s)
Colony Count, Microbial , Red Meat , Animals , Cattle , Food Microbiology , Hot Temperature , Humans , Kinetics , Michigan , Models, Biological , Salmonella
13.
J Food Prot ; 79(11): 1833-1839, 2016 11.
Article in English | MEDLINE | ID: mdl-28221914

ABSTRACT

Limited prior research has shown that inoculation methods affect thermal resistance of Salmonella in low-moisture foods; however, these effects and their repeatability have not been systematically quantified. Consequently, method variability across studies limits utility of individual data sets and cross-study comparisons. Therefore, the objective was to evaluate the effects of inoculation methodologies on stability and thermal resistance of Salmonella in a low-moisture food (wheat flour), and the repeatability of those results, based on data generated by two independent laboratories. The experimental design consisted of a cross-laboratory comparison, both conducting isothermal Salmonella inactivation studies in wheat flour (~0.45 water activity, 80°C), utilizing five different inoculation methods: (i) broth-based liquid inoculum, (ii) lawn-based liquid inoculum, (iii) lawn-based pelletized inoculum, (iv) direct harvest of lawn culture with wheat flour, and (v) fomite transfer of a lawn culture. Inoculated wheat flour was equilibrated ~5 days to ~0.45 water activity and then was subjected to isothermal treatment (80°C) in aluminum test cells. Results indicated that inoculation method impacted repeatability, population stability, and inactivation kinetics (α = 0.05), regardless of laboratory. Salmonella inoculated with the broth-based liquid inoculum method and the fomite transfer of a lawn culture method exhibited instability during equilibration. Lawn-based cultures resulted in stable populations prior to thermal treatment; however, the method using direct harvest of lawn culture with wheat flour yielded different D-values across the laboratories (α = 0.05), which was attributed to larger potential impact of operator variability. The lawn-based liquid inoculum and the lawn-based pelletized inoculum methods yielded stable inoculation levels and repeatable D-values (~250 and ~285 s, respectively). Also, inoculation level (3 to 8 log CFU/g) did not affect D-values (using the lawn-based liquid inoculum method). Overall, the results demonstrate that inoculation methods significantly affect Salmonella population kinetics and subsequent interpretation of thermal inactivation data for low-moisture foods.


Subject(s)
Flour , Triticum , Colony Count, Microbial , Food Microbiology , Salmonella/drug effects
14.
J Food Prot ; 79(12): 2058-2065, 2016 12.
Article in English | MEDLINE | ID: mdl-28221962

ABSTRACT

Salmonella continues to be a problem associated with low-moisture foods, particularly given enhanced thermal resistance at lower water activity (aw). However, there is a scarcity of thermal inactivation models accounting for the effect of aw. The objective of this study was to test multiple secondary models for the effect of product (wheat flour) aw on Salmonella enterica Enteritidis phage type 30 thermal resistance. A full-factorial experimental design included three temperatures (75, 80, and 85°C) and four aw values (~0.30, 0.45, 0.60, and 0.70). Prior to isothermal treatment, sample aw was achieved by equilibrating samples in a humidity-controlled conditioning chamber. Two primary models (log linear and Weibull type) and three secondary models (second-order response surface, modified Bigelow type, and combined effects) were evaluated using the corrected Akaike information criterion and root mean squared errors. Statistical analyses of the primary models favored the log-linear model. Incorporating the three secondary models into the log-linear primary model yielded root mean squared errors of 2.1, 0.78, and 0.96 log CFU/g and corrected Akaike information criterion values of 460, -145, and -19 for the response surface, modified Bigelow, and combined-effects models, respectively. The modified Bigelow-type model, which exponentially scaled both temperature and aw effects on thermal inactivation rates, predicted Salmonella lethality significantly better (P < 0.05) than did the other secondary models examined. Overall, aw is a critical factor affecting thermal inactivation of Salmonella in low-moisture products and should be appropriately included in thermal inactivation models for these types of systems.


Subject(s)
Salmonella enteritidis , Temperature , Colony Count, Microbial , Flour , Food Contamination , Food Handling , Food Microbiology , Salmonella , Triticum , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...