Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Med Biol ; 67(15)2022 07 14.
Article in English | MEDLINE | ID: mdl-35724648

ABSTRACT

Objective. Reliable radionuclide production yield data are a prerequisite for positron-emission-tomography (PET) basedin vivoproton treatment verification. In this context, activation data acquired at two different treatment facilities with different imaging systems were analyzed to provide experimentally determined radionuclide yields in thick targets and were compared with each other to investigate the impact of the respective imaging technique.Approach.Homogeneous thick targets (PMMA, gelatine, and graphite) were irradiated with mono-energetic proton pencil-beams at two distinct energies. Material activation was measured (i)in-beamduring and after beam delivery with a double-head prototype PET camera and (ii)offlineshortly after beam delivery with a commercial full-ring PET/CT scanner. Integral as well as depth-resolvedß+-emitter yields were determined for the dominant positron-emitting radionuclides11C,15O,13N and (in-beamonly)10C.In-beamdata were used to investigate the qualitative impact of different monitoring time schemes on activity depth profiles and their quantitative impact on count rates and total activity.Main results.Production yields measured with thein-beamcamera were comparable to or higher compared to respectiveofflineresults. Depth profiles of radionuclide-specific yields obtained from thedouble-headcamera showed qualitative differences to data acquired with thefull-ringcamera with a more convex profile shape. Considerable impact of the imaging timing scheme on the activity profile was observed for gelatine only with a range variation of up to 3.5 mm. Evaluation of the coincidence rate and the total number of observed events in the considered workflows confirmed a strongly decreasing rate in targets with a large oxygen fraction.Significance. The observed quantitative and qualitative differences between the datasets underline the importance of a thorough system commissioning. Due to the lack of reliable cross-section data, in-house phantom measurements are still considered a gold standard for careful characterization of the system response and to ensure a reliable beam range verification.


Subject(s)
Proton Therapy , Protons , Phantoms, Imaging , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Proton Therapy/methods , Radioisotopes
SELECTION OF CITATIONS
SEARCH DETAIL
...