Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Microbiol ; 7(11): 1762-1776, 2022 11.
Article in English | MEDLINE | ID: mdl-36289397

ABSTRACT

Of the 13 known independent zoonoses of simian immunodeficiency viruses to humans, only one, leading to human immunodeficiency virus (HIV) type 1(M) has become pandemic, causing over 80 million human infections. To understand the specific features associated with pandemic human-to-human HIV spread, we compared replication of HIV-1(M) with non-pandemic HIV-(O) and HIV-2 strains in myeloid cell models. We found that non-pandemic HIV lineages replicate less well than HIV-1(M) owing to activation of cGAS and TRIM5-mediated antiviral responses. We applied phylogenetic and X-ray crystallography structural analyses to identify differences between pandemic and non-pandemic HIV capsids. We found that genetic reversal of two specific amino acid adaptations in HIV-1(M) enables activation of TRIM5, cGAS and innate immune responses. We propose a model in which the parental lineage of pandemic HIV-1(M) evolved a capsid that prevents cGAS and TRIM5 triggering, thereby allowing silent replication in myeloid cells. We hypothesize that this capsid adaptation promotes human-to-human spread through avoidance of innate immune response activation.


Subject(s)
HIV Infections , HIV-1 , Simian Immunodeficiency Virus , Animals , Humans , Phylogeny , Simian Immunodeficiency Virus/metabolism , Capsid/metabolism , HIV-1/genetics , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , HIV Infections/epidemiology , HIV Infections/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
2.
Elife ; 92020 06 17.
Article in English | MEDLINE | ID: mdl-32553106

ABSTRACT

The type one interferon induced restriction factor Myxovirus resistance B (MxB) restricts HIV-1 nuclear entry evidenced by inhibition of 2-LTR but not linear forms of viral DNA. The HIV-1 capsid is the key determinant of MxB sensitivity and cofactor binding defective HIV-1 capsid mutants P90A (defective for cyclophilin A and Nup358 recruitment) and N74D (defective for CPSF6 recruitment) have reduced dependency on nuclear transport associated cofactors, altered integration targeting preferences and are not restricted by MxB expression. This has suggested that nuclear import mechanism may determine MxB sensitivity. Here we have use genetics to separate HIV-1 nuclear import cofactor dependence from MxB sensitivity. We provide evidence that MxB sensitivity depends on HIV-1 capsid conformation, rather than cofactor recruitment. We show that depleting CPSF6 to change nuclear import pathway does not impact MxB sensitivity, but mutants that recapitulate the effect of Cyclophilin A binding on capsid conformation and dynamics strongly impact MxB sensitivity. We demonstrate that HIV-1 primary isolates have different MxB sensitivities due to cytotoxic T lymphocyte (CTL) selected differences in Gag sequence but similar cofactor dependencies. Overall our work demonstrates a complex relationship between cyclophilin dependence and MxB sensitivity likely driven by CTL escape. We propose that cyclophilin binding provides conformational flexibility to HIV-1 capsid facilitating simultaneous evasion of capsid-targeting restriction factors including TRIM5 as well as MxB.


Subject(s)
Capsid/chemistry , HIV-1/physiology , Myxovirus Resistance Proteins/chemistry , Active Transport, Cell Nucleus , HIV-1/chemistry , Humans
3.
Nature ; 536(7616): 349-53, 2016 08 18.
Article in English | MEDLINE | ID: mdl-27509857

ABSTRACT

During the early stages of infection, the HIV-1 capsid protects viral components from cytosolic sensors and nucleases such as cGAS and TREX, respectively, while allowing access to nucleotides for efficient reverse transcription. Here we show that each capsid hexamer has a size-selective pore bound by a ring of six arginine residues and a 'molecular iris' formed by the amino-terminal ß-hairpin. The arginine ring creates a strongly positively charged channel that recruits the four nucleotides with on-rates that approach diffusion limits. Progressive removal of pore arginines results in a dose-dependent and concomitant decrease in nucleotide affinity, reverse transcription and infectivity. This positively charged channel is universally conserved in lentiviral capsids despite the fact that it is strongly destabilizing without nucleotides to counteract charge repulsion. We also describe a channel inhibitor, hexacarboxybenzene, which competes for nucleotide binding and efficiently blocks encapsidated reverse transcription, demonstrating the tractability of the pore as a novel drug target.


Subject(s)
Capsid/metabolism , DNA Replication , DNA, Viral/biosynthesis , HIV-1/metabolism , Nucleotides/metabolism , Arginine/metabolism , Benzoates/pharmacology , Binding, Competitive/drug effects , Biological Transport, Active/drug effects , Capsid/chemistry , Capsid/drug effects , DNA Replication/drug effects , Diffusion , HEK293 Cells , HIV-1/drug effects , HIV-1/genetics , HIV-1/growth & development , HeLa Cells , Humans , Kinetics , Models, Molecular , Porosity/drug effects , Reverse Transcription/drug effects
4.
J Biol Chem ; 291(9): 4356-73, 2016 Feb 26.
Article in English | MEDLINE | ID: mdl-26679998

ABSTRACT

The mitochondrial permeability transition pore is a recognized drug target for neurodegenerative conditions such as multiple sclerosis and for ischemia-reperfusion injury in the brain and heart. The peptidylprolyl isomerase, cyclophilin D (CypD, PPIF), is a positive regulator of the pore, and genetic down-regulation or knock-out improves outcomes in disease models. Current inhibitors of peptidylprolyl isomerases show no selectivity between the tightly conserved cyclophilin paralogs and exhibit significant off-target effects, immunosuppression, and toxicity. We therefore designed and synthesized a new mitochondrially targeted CypD inhibitor, JW47, using a quinolinium cation tethered to cyclosporine. X-ray analysis was used to validate the design concept, and biological evaluation revealed selective cellular inhibition of CypD and the permeability transition pore with reduced cellular toxicity compared with cyclosporine. In an experimental autoimmune encephalomyelitis disease model of neurodegeneration in multiple sclerosis, JW47 demonstrated significant protection of axons and improved motor assessments with minimal immunosuppression. These findings suggest that selective CypD inhibition may represent a viable therapeutic strategy for MS and identify quinolinium as a mitochondrial targeting group for in vivo use.


Subject(s)
Cerebral Cortex/drug effects , Cyclophilins/antagonists & inhibitors , Mitochondrial Membrane Transport Proteins/antagonists & inhibitors , Multiple Sclerosis/prevention & control , Neurons/drug effects , Neuroprotective Agents/therapeutic use , Quinolinium Compounds/therapeutic use , Amino Acid Substitution , Animals , Cell Proliferation/drug effects , Cells, Cultured , Cerebral Cortex/immunology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Peptidyl-Prolyl Isomerase F , Cyclophilins/genetics , Cyclophilins/metabolism , Cyclosporins/adverse effects , Cyclosporins/chemical synthesis , Cyclosporins/pharmacology , Cyclosporins/therapeutic use , Hep G2 Cells , Humans , Liver/drug effects , Liver/metabolism , Male , Mice, Inbred Strains , Mice, Knockout , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Permeability Transition Pore , Multiple Sclerosis/immunology , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Mutation , Neurons/immunology , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/adverse effects , Neuroprotective Agents/pharmacology , Peptides, Cyclic/adverse effects , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Quinolinium Compounds/adverse effects , Quinolinium Compounds/chemical synthesis , Quinolinium Compounds/pharmacology , Random Allocation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/pathology
5.
Proc Natl Acad Sci U S A ; 111(26): 9609-14, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24979782

ABSTRACT

Restriction factors (RFs) form important components of host defenses to retroviral infection. The Fv1, Trim5α, and TrimCyp RFs contain N-terminal dimerization and C-terminal specificity domains that target assembled retroviral capsid (CA) proteins enclosing the viral core. However, the molecular detail of the interaction between RFs and their CA targets is unknown. Therefore, we have determined the crystal structure of the B-box and coiled-coil (BCC) region from Trim5α and used small-angle X-ray scattering to examine the solution structure of Trim5α BCC, the dimerization domain of Fv1 (Fv1Ntd), and the hybrid restriction factor Fv1Cyp comprising Fv1NtD fused to the HIV-1 binding protein Cyclophilin A (CypA). These data reveal that coiled-coil regions of Fv1 and Trim5α form extended antiparallel dimers. In Fv1Cyp, two CypA moieties are located at opposing ends, creating a molecule with a dumbbell appearance. In Trim5α, the B-boxes are located at either end of the coiled-coil, held in place by interactions with a helical motif from the L2 region of the opposing monomer. A comparative analysis of Fv1Cyp and CypA binding to a preformed HIV-1 CA lattice reveals how RF dimerization enhances the affinity of interaction through avidity effects. We conclude that the antiparallel organization of the NtD regions of Fv1 and Trim5α dimers correctly positions C-terminal specificity and N-terminal effector domains and facilitates stable binding to adjacent CA hexamers in viral cores.


Subject(s)
Capsid/metabolism , HIV-1/metabolism , Models, Molecular , Muramidase/chemistry , Proteins/chemistry , Virus Internalization , Amino Acid Sequence , Animals , Bacteriophage T4/enzymology , Base Sequence , Chromatography, Gel , Crystallization , Dimerization , Escherichia coli , Linear Models , Macaca mulatta , Microscopy, Electron , Molecular Sequence Data , Protein Conformation , Proteins/genetics , Proteins/metabolism , Recombinant Fusion Proteins/genetics , Scattering, Small Angle , Sequence Analysis, DNA , Surface Plasmon Resonance , Ubiquitin-Protein Ligases , X-Ray Diffraction
6.
Curr Opin Virol ; 4: 32-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24525292

ABSTRACT

Lentiviruses have evolved to infect and replicate in a variety of cell types in vivo whilst avoiding the powerful inhibitory activities of restriction factors or cell autonomous innate immune responses. In this review we offer our opinions on how HIV-1 uses a series of host proteins as cofactors for infection. We present a model that may explain how the capsid protein has a fundamental role in the early part of the viral lifecycle by utilising cyclophilin A (CypA), cleavage and polyadenylation specificity factor-6 (CPSF6), Nup358 and TNPO3 to orchestrate a coordinated process of DNA synthesis, capsid uncoating and integration targeting that evades innate responses and promotes integration into preferred areas of chromatin.


Subject(s)
Active Transport, Cell Nucleus , HIV-1/physiology , Host-Pathogen Interactions , Reverse Transcription , Cyclophilin A/metabolism , HIV Core Protein p24/metabolism , Humans , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/metabolism , beta Karyopherins/metabolism , mRNA Cleavage and Polyadenylation Factors/metabolism
7.
Nature ; 503(7476): 402-405, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24196705

ABSTRACT

Human immunodeficiency virus (HIV)-1 is able to replicate in primary human macrophages without stimulating innate immunity despite reverse transcription of genomic RNA into double-stranded DNA, an activity that might be expected to trigger innate pattern recognition receptors. We reasoned that if correctly orchestrated HIV-1 uncoating and nuclear entry is important for evasion of innate sensors then manipulation of specific interactions between HIV-1 capsid and host factors that putatively regulate these processes should trigger pattern recognition receptors and stimulate type 1 interferon (IFN) secretion. Here we show that HIV-1 capsid mutants N74D and P90A, which are impaired for interaction with cofactors cleavage and polyadenylation specificity factor subunit 6 (CPSF6) and cyclophilins (Nup358 and CypA), respectively, cannot replicate in primary human monocyte-derived macrophages because they trigger innate sensors leading to nuclear translocation of NF-κB and IRF3, the production of soluble type 1 IFN and induction of an antiviral state. Depletion of CPSF6 with short hairpin RNA expression allows wild-type virus to trigger innate sensors and IFN production. In each case, suppressed replication is rescued by IFN-receptor blockade, demonstrating a role for IFN in restriction. IFN production is dependent on viral reverse transcription but not integration, indicating that a viral reverse transcription product comprises the HIV-1 pathogen-associated molecular pattern. Finally, we show that we can pharmacologically induce wild-type HIV-1 infection to stimulate IFN secretion and an antiviral state using a non-immunosuppressive cyclosporine analogue. We conclude that HIV-1 has evolved to use CPSF6 and cyclophilins to cloak its replication, allowing evasion of innate immune sensors and induction of a cell-autonomous innate immune response in primary human macrophages.


Subject(s)
HIV-1/immunology , Immune Evasion , Immunity, Innate/immunology , Macrophages/immunology , Macrophages/virology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cyclophilins/metabolism , Cyclosporine/metabolism , HIV Infections/immunology , HIV Infections/metabolism , HIV Infections/pathology , HIV Infections/virology , HIV-1/metabolism , Humans , Interferon Regulatory Factor-3/metabolism , Interferon Type I/immunology , Interferon Type I/metabolism , Macrophages/cytology , Macrophages/pathology , Molecular Chaperones/metabolism , Monocytes/cytology , NF-kappa B/metabolism , Nuclear Pore Complex Proteins/metabolism , Receptors, Pattern Recognition , Virus Internalization , Virus Replication/immunology , mRNA Cleavage and Polyadenylation Factors/deficiency , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
8.
Proc Natl Acad Sci U S A ; 108(14): 5771-6, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21436027

ABSTRACT

The restriction factor Fv1 confers resistance to murine leukemia virus (MLV), blocking progression of the viral life cycle after reverse transcription, but before integration into the host chromosome. It is known that the specificity of restriction is determined by both the restriction factor and the viral capsid (CA), but a direct interaction between Fv1 and MLV CA has not yet been demonstrated. With the development of a previously unexplored method for in vitro polymerization of MLV CA, it has now been possible to display a binding interaction between Fv1 and MLV CA. C-terminally His-tagged CA molecules were assembled on Ni-chelating lipid nanotubes, and analysis by electron microscopy revealed the formation of a regular lattice. Comparison of binding data with existing restriction data confirmed the specificity of the binding interaction, with multiple positions of both Fv1 and CA shown to influence binding specificity.


Subject(s)
Capsid Proteins/metabolism , Leukemia Virus, Murine/metabolism , Nanotubes/virology , Protein Binding , Proteins/metabolism , Animals , Capsid Proteins/genetics , DNA Primers/genetics , Image Processing, Computer-Assisted , Lipid Metabolism , Mice , Microscopy, Electron , Mutagenesis , Nanotubes/ultrastructure , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...