Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(50): 47472-47481, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38144120

ABSTRACT

Steel converter slag, also called LD slag, is a material that has been suggested for use as a low-cost oxygen carrier for chemical looping applications. Low-cost oxygen carriers are especially relevant for the conversion of solid fuels, which may contain large amounts of reactive ashes. Ash may limit the lifetime of the bed material, which is why a high-cost oxygen carrier will likely not be competitive. Applying LD slag on an industrial scale as an oxygen carrier makes the storage properties of the material highly interesting. LD slag has been known to be affected by weathering, thus limiting the possibilities of the material to be used in construction, e.g., as fillers in concrete. In this study, pretreated LD slag for use as an oxygen carrier was weathered outdoors for roughly 1.5 years in southwest Sweden. Afterward, the particles were characterized and used in a laboratory batch fluidized bed reactor system to evaluate the effects of storage on the oxygen carrier properties. It was found that the reactivity with the fuel of the weathered LD slag was similar to that of the original sample when used in a laboratory fluidized bed. However, the physical properties were severely degraded due to weathering. Dissolved CaO formed CaCO3, agglomerating the top layer of the sample. The particles in the bulk of the sample were found to have decreased density and increased attrition rate. This suggests that LD slag particles for use as oxygen carriers should be stored dry to avoid weathering of the particles.

2.
ACS Omega ; 5(36): 22966-22977, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32954146

ABSTRACT

This study describes how potassium salts representative of those in bio ash affect the reactivity of the oxygen carrier ilmenite under moist and dry conditions. Ilmenite is a bench-mark oxygen carrier for chemical-looping combustion, a technique that can separate CO2 from flue gases with minimal energy penalty. Different potassium salts were mixed with ilmenite to a concentration of 4 wt % potassium. The salts used were K2CO3, K2SO4, KCl, and KH2PO4. Experiments were performed at 850 °C under alternately oxidizing and reducing conditions in a dry atmosphere or in the presence of steam. Analyses of the oxygen carrier regarding changes in reactivity, structure, and composition followed the exposures. This study showed that salts such as K2CO3, K2SO4, and KCl increase the reactivity of the ilmenite. For the samples mixed with KCl, most of the salt was evaporated. KH2PO4 decomposed into KPO3, forming layers around the ilmenite particles that lead to agglomeration. Additionally, the KPO3 layer was more or less nonpermeable for CO and decreased the reactivity toward H2 significantly in both dry and wet conditions. This decreased reactivity indicates that the concentration of phosphorus in biofuel may have a significant effect on oxygen carrier degradation. It was also observed that the presence of steam changed the chemistry drastically for the nonphosphorus-containing salts. Alkali salts may react with steam, forming volatile KOH that evaporates partly. KOH may also form K-titanates by reaction with the oxygen carrier, leading to segregation of iron and titanium phases in the ilmenite.

SELECTION OF CITATIONS
SEARCH DETAIL
...