Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Brain Res ; 1726: 146519, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31654640

ABSTRACT

BACKGROUND: Metabolites involved in one-carbon metabolism (OCM) may predict cognitive prognosis in dementia. The link between OCM, apolipoprotein E (APOE), and DNA methylation creates a biologically plausible mechanism of interaction. AIM: To assess OCM metabolites as predictors of 5-year cognitive prognosis in patients with mild dementia, and in subgroups defined by the APOEε4 allele variant. METHODS: We followed one-hundred and fifty-two patients with mild dementia (86 with Alzheimer's disease, 66 with Lewy body dementia, including 90 with at least one APOEε4 allele) for 5 years with annual Mini-Mental State Examinations (MMSE). Total homocysteine, methionine, choline, betaine, dimethylglycine, sarcosine, folate, cobalamin and pyridoxal 5'-phoshate were measured in serum at baseline. We used linear mixed models to assess metabolite-MMSE associations, including 3-way interactions between metabolites, time, and APOEε4. False-discovery rate adjusted p-values (Q-values) are reported. RESULTS: Metabolite concentrations were not different in patients with dementia according to the presence of APOEε4. Overall, serum concentration of total homocysteine was inversely associated with MMSE performance, while betaine was positively associated with MMSE (Q < 0.05), but neither was associated with MMSE decline. Serum concentrations of betaine, dimethylglycine and sarcosine, however, were associated with slower MMSE decline in patients with APOEε4, but with faster MMSE decline in patients without the allele (all 3-way interactions: Q < 0.05). CONCLUSION: Components of the choline oxidation pathway are associated with a better cognitive prognosis in APOEε4 carriers and a worse cognitive prognosis in non-carriers. Further research investigating targeted metabolic interventions according to APOE allele status is warranted.


Subject(s)
Apolipoprotein E4/genetics , Choline/metabolism , Dementia/genetics , Dementia/metabolism , Aged , Alzheimer Disease/diagnosis , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/genetics , Cognitive Dysfunction/metabolism , Dementia/diagnosis , Female , Humans , Lewy Body Disease/diagnosis , Lewy Body Disease/genetics , Lewy Body Disease/metabolism , Male
2.
Int J Tryptophan Res ; 12: 1178646919885637, 2019.
Article in English | MEDLINE | ID: mdl-31798303

ABSTRACT

BACKGROUND: The apolipoprotein E ε4 gene variant (APOEε4) confers considerable risk for dementia and affects neuroinflammation, brain metabolism, and synaptic function. The kynurenine pathway (KP) gives rise to neuroactive metabolites, which have inflammatory, redox, and excitotoxic effects in the brain. AIM: To assess whether the presence of at least one APOEε4 allele modifies the association between kynurenines and the cognitive prognosis. METHODS: A total of 152 patients with sera for metabolite measurements and APOE genotype were included from the Dementia Study of Western Norway. The participants had mild Alzheimer disease and Lewy body dementia. Apolipoprotein E ε4 gene variant allele status was classified as one or more ε4 versus any other. Mini-Mental State Examination (MMSE) was measured at baseline and for 5 consecutive years. Mann-Whitney U tests and linear mixed-effects models were used for statistical analysis. RESULTS: There were no significant differences in serum concentrations of tryptophan and kynurenine according to the presence or absence of APOEε4. High serum concentrations of kynurenic acid, quinolinic acid, and picolinic acid, and a higher kynurenine-to-tryptophan ratio, were all associated with more cognitive decline in patients without APOEε4 compared to those with the APOEε4 allele (P-value of the interactions < .05). CONCLUSIONS: Kynurenic acid, quinolinic acid, picolinic acid, and the kynurenine-to-tryptophan ratio were associated with a significant increase in cognitive decline when the APOEε4 variant was absent, whereas there was a relatively less decline when the APOEε4 variant was present.

SELECTION OF CITATIONS
SEARCH DETAIL
...