Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Gen Comp Endocrinol ; 355: 114547, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38772453

ABSTRACT

The behavioral endocrinology associated with reproduction and uniparental male care has been studied in teleosts, but little is known about hormonal correlates of uniparental male care in other ectotherms. To address this gap, we are the first to document the seasonal steroid endocrinology of uniparental male hellbender salamanders during the transition from pre-breeding to nest initiation, and through the subsequent eight months of paternal care. In doing so, we investigated the correlates of nest fate and clutch size, exploring hellbenders' alignment with several endocrinological patterns observed in uniparental male fish. Understanding the endocrinology of hellbender paternal care is also vital from a conservation perspective because high rates of nest failure were recently identified as a factor causing population declines in this imperiled species. We corroborated previous findings demonstrating testosterone and dihydrotestosterone (DHT) to be the primary androgens in hellbender reproduction, and that cortisol circulates as the most abundant glucocorticoid. However, we were unable to identify a prolactin or a "prolactin-like" peptide in circulation prior to or during parental care. We observed âˆ¼ 80 % declines in both primary androgens during the transition from pre-breeding to nest initiation, and again as paternal care progressed past its first month. In the days immediately following nest initiation, testosterone and DHT trended higher in successful individuals, but did not differ with males' clutch size. We did not observe meaningful seasonality in baseline glucocorticoids associated with breeding or nesting. In contrast, stress-induced glucocorticoids were highest at pre-breeding and through the first two months of care, before declining during the latter-most periods of care as larvae approach emergence from the nest. Neither baseline nor stress-induced glucocorticoids varied significantly with either nest fate or clutch size. Both stress-induced cortisol and corticosterone were positively correlated with total length, a proxy for age in adult hellbenders. This is consistent with age-related patterns in some vertebrates, but the first such pattern observed in a wild amphibian population. Generally, we found that nesting hellbenders adhere to some but not all of the endocrinological patterns observed in uniparental male teleosts prior to and during parental care.


Subject(s)
Androgens , Glucocorticoids , Paternal Behavior , Urodela , Animals , Male , Androgens/metabolism , Androgens/blood , Glucocorticoids/metabolism , Urodela/metabolism , Urodela/physiology , Paternal Behavior/physiology , Testosterone/metabolism , Testosterone/blood , Nesting Behavior/physiology , Reproduction/physiology , Seasons
2.
Pharmacol Res ; 184: 106409, 2022 10.
Article in English | MEDLINE | ID: mdl-35995346

ABSTRACT

A range of neurodegenerative and related aging diseases, such as Alzheimer's disease and type 2 diabetes, are linked to toxic protein aggregation. Yet the mechanisms of protein aggregation inhibition by small molecule inhibitors remain poorly understood, in part because most protein targets of aggregation assembly are partially unfolded or intrinsically disordered, which hinders detailed structural characterization of protein-inhibitor complexes and structural-based inhibitor design. Herein we employed a parallel small molecule library-screening approach to identify inhibitors against three prototype amyloidogenic proteins in neurodegeneration and related proteinopathies: amylin, Aß and tau. One remarkable class of inhibitors identified from these screens against different amyloidogenic proteins was catechol-containing compounds and redox-related quinones/anthraquinones. Secondary assays validated most of the identified inhibitors. In vivo efficacy evaluation of a selected catechol-containing compound, rosmarinic acid, demonstrated its strong mitigating effects of amylin amyloid deposition and related diabetic pathology in transgenic HIP rats. Further systematic investigation of selected class of inhibitors under aerobic and anaerobic conditions revealed that the redox state of the broad class of catechol-containing compounds is a key determinant of the amyloid inhibitor activities. The molecular insights we gained not only explain why a large number of catechol-containing polyphenolic natural compounds, often enriched in healthy diet, have anti-neurodegeneration and anti-aging activities, but also could guide the rational design of therapeutic or nutraceutical strategies to target a broad range of neurodegenerative and related aging diseases.


Subject(s)
Alzheimer Disease , Diabetes Mellitus, Type 2 , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Amyloidogenic Proteins/metabolism , Animals , Anthraquinones , Catechols/pharmacology , Catechols/therapeutic use , Islet Amyloid Polypeptide/metabolism , Islet Amyloid Polypeptide/therapeutic use , Oxidation-Reduction , Protein Aggregates , Quinones , Rats
3.
Plant J ; 110(4): 932-945, 2022 05.
Article in English | MEDLINE | ID: mdl-35218268

ABSTRACT

Flavonoids are a well-known class of specialized metabolites that play key roles in plant development, reproduction, and survival. Flavonoids are also of considerable interest from the perspective of human health, as both phytonutrients and pharmaceuticals. RNA sequencing analysis of an Arabidopsis null allele for chalcone synthase (CHS), which catalyzes the first step in flavonoid metabolism, has uncovered evidence that these compounds influence the expression of genes associated with the plant circadian clock. Analysis of promoter-luciferase constructs further showed that the transcriptional activity of CCA1 and TOC1, two key clock genes, is altered in CHS-deficient seedlings across the day/night cycle. Similar findings for a mutant line lacking flavonoid 3'-hydroxylase (F3'H) activity, and thus able to synthesize mono- but not dihydroxylated B-ring flavonoids, suggests that the latter are at least partially responsible; this was further supported by the ability of quercetin to enhance CCA1 promoter activity in wild-type and CHS-deficient seedlings. The effects of flavonoids on circadian function were also reflected in photosynthetic activity, with chlorophyll cycling abolished in CHS- and F3'H-deficient plants. Remarkably, the same phenotype was exhibited by plants with artificially high flavonoid levels, indicating that neither the antioxidant potential nor the light-screening properties of flavonoids contribute to optimal clock function, as has recently also been demonstrated in animal systems. Collectively, the current experiments point to a previously unknown connection between flavonoids and circadian cycling in plants and open the way to better understanding of the molecular basis of flavonoid action.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Circadian Clocks , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Circadian Clocks/genetics , Circadian Rhythm/genetics , Flavonoids/metabolism , Gene Expression Regulation, Plant , Mutation , Seedlings/metabolism
4.
Nat Microbiol ; 6(12): 1583-1592, 2021 12.
Article in English | MEDLINE | ID: mdl-34819646

ABSTRACT

Peptidoglycan-a mesh sac of glycans that are linked by peptides-is the main component of bacterial cell walls. Peptidoglycan provides structural strength, protects cells from osmotic pressure and contributes to shape. All bacterial glycans are repeating disaccharides of N-acetylglucosamine (GlcNAc) ß-(1-4)-linked to N-acetylmuramic acid (MurNAc). Borrelia burgdorferi, the tick-borne Lyme disease pathogen, produces glycan chains in which MurNAc is occasionally replaced with an unknown sugar. Nuclear magnetic resonance, liquid chromatography-mass spectroscopy and genetic analyses show that B. burgdorferi produces glycans that contain GlcNAc-GlcNAc. This unusual disaccharide is chitobiose, a component of its chitinous tick vector. Mutant bacteria that are auxotrophic for chitobiose have altered morphology, reduced motility and cell envelope defects that probably result from producing peptidoglycan that is stiffer than that in wild-type bacteria. We propose that the peptidoglycan of B. burgdorferi probably evolved by adaptation to obligate parasitization of a tick vector, resulting in a biophysical cell-wall alteration to withstand the atypical torque associated with twisting motility.


Subject(s)
Borrelia burgdorferi/metabolism , Cell Wall/metabolism , Sugars/metabolism , Ticks/microbiology , Animals , Borrelia burgdorferi/genetics , Cell Wall/chemistry , Cell Wall/genetics , Host-Pathogen Interactions , Muramic Acids/metabolism , Peptidoglycan/metabolism , Sugars/chemistry , Ticks/metabolism
5.
Metabolites ; 11(9)2021 Sep 04.
Article in English | MEDLINE | ID: mdl-34564416

ABSTRACT

Phosphate is a major plant macronutrient and low phosphate availability severely limits global crop productivity. In Arabidopsis, a key regulator of the transcriptional response to low phosphate, phosphate starvation response 1 (PHR1), is modulated by a class of signaling molecules called inositol pyrophosphates (PP-InsPs). Two closely related diphosphoinositol pentakisphosphate enzymes (AtVIP1 and AtVIP2) are responsible for the synthesis and turnover of InsP8, the most implicated molecule. This study is focused on characterizing Arabidopsis vip1/vip2 double mutants and their response to low phosphate. We present evidence that both local and systemic responses to phosphate limitation are dampened in the vip1/vip2 mutants as compared to wild-type plants. Specifically, we demonstrate that under Pi-limiting conditions, the vip1/vip2 mutants have shorter root hairs and lateral roots, less accumulation of anthocyanin and less accumulation of sulfolipids and galactolipids. However, phosphate starvation response (PSR) gene expression is unaffected. Interestingly, many of these phenotypes are opposite to those exhibited by other mutants with defects in the PP-InsP synthesis pathway. Our results provide insight on the nexus between inositol phosphates and pyrophosphates involved in complex regulatory mechanisms underpinning phosphate homeostasis in plants.

6.
Front Plant Sci ; 12: 693739, 2021.
Article in English | MEDLINE | ID: mdl-34527005

ABSTRACT

Interactions between plants and leaf herbivores have long been implicated as the major driver of plant secondary metabolite diversity. However, other plant-animal interactions, such as those between fruits and frugivores, may also be involved in phytochemical diversification. Using 12 species of Piper, we conducted untargeted metabolomics and molecular networking with extracts of fruits and leaves. We evaluated organ-specific secondary metabolite composition and compared multiple dimensions of phytochemical diversity across organs, including richness, structural complexity, and variability across samples at multiple scales within and across species. Plant organ identity, species identity, and the interaction between the two all significantly influenced secondary metabolite composition. Leaves and fruit shared a majority of compounds, but fruits contained more unique compounds and had higher total estimated chemical richness. While the relative levels of chemical richness and structural complexity across organs varied substantially across species, fruit diversity exceeded leaf diversity in more species than the reverse. Furthermore, the variance in chemical composition across samples was higher for fruits than leaves. By documenting a broad pattern of high phytochemical diversity in fruits relative to leaves, this study lays groundwork for incorporating fruit into a comprehensive and integrative understanding of the ecological and evolutionary factors shaping secondary metabolite composition at the whole-plant level.

7.
J Bacteriol ; 203(17): e0021621, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34124939

ABSTRACT

Chemoreceptors enable the legume symbiont Sinorhizobium meliloti to detect and respond to specific chemicals released from their host plant alfalfa, which allows the establishment of a nitrogen-fixing symbiosis. The periplasmic region (PR) of transmembrane chemoreceptors act as the sensory input module for chemotaxis systems via binding of specific ligands, either directly or indirectly. S. meliloti has six transmembrane and two cytosolic chemoreceptors. However, the function of only three of the transmembrane receptors have been characterized so far, with McpU, McpV, and McpX serving as general amino acid, short-chain carboxylate, and quaternary ammonium compound sensors, respectively. In the present study, we analyzed the S. meliloti chemoreceptor McpT. High-throughput differential scanning fluorimetry assays, using Biolog phenotype microarray plates, identified 15 potential ligands for McpTPR, with the majority classified as mono-, di-, and tricarboxylates. S. meliloti exhibited positive chemotaxis toward seven selected carboxylates, namely, α-ketobutyrate, citrate, glyoxylate, malate, malonate, oxalate, and succinate. These carboxylates were detected in seed exudates of the alfalfa host. Deletion of mcpT resulted in a significant decrease of chemotaxis to all carboxylates except for citrate. Isothermal titration calorimetry revealed that McpTPR bound preferentially to the monocarboxylate glyoxylate and with lower affinity to the dicarboxylates malate, malonate, and oxalate. However, no direct binding was detected for the remaining three carboxylates that elicited an McpT-dependent chemotaxis response. Taken together, these results demonstrate that McpT is a broad-range carboxylate chemoreceptor that mediates chemotactic response via direct ligand binding and an indirect mechanism that needs to be identified. IMPORTANCE Nitrate pollution is one of the most widespread and challenging environmental problems that is mainly caused by the agricultural overapplication of nitrogen fertilizers. Biological nitrogen fixation by the endosymbiont Sinorhizobium meliloti enhances the growth of its host Medicago sativa (alfalfa), which also efficiently supplies the soil with nitrogen. Establishment of the S. meliloti-alfalfa symbiosis relies on the early exchange and recognition of chemical signals. The present study contributes to the disclosure of this complex molecular dialogue by investigating the underlying mechanisms of carboxylate sensing in S. meliloti. Understanding individual steps that govern the S. meliloti-alfalfa molecular cross talk helps in the development of efficient, commercial bacterial inoculants that promote the growth of alfalfa, which is the most cultivated forage legume in the world, and improves soil fertility.


Subject(s)
Bacterial Proteins/metabolism , Chemotactic Factors/metabolism , Sinorhizobium meliloti/metabolism , Bacterial Proteins/genetics , Carboxylic Acids/chemistry , Carboxylic Acids/metabolism , Chemotactic Factors/genetics , Chemotaxis , Gene Deletion , Glyoxylates/metabolism , Ligands , Sinorhizobium meliloti/genetics
8.
Front Microbiol ; 11: 581482, 2020.
Article in English | MEDLINE | ID: mdl-33193213

ABSTRACT

The symbiotic interaction between leguminous plants and their cognate rhizobia allows for the fixation of gaseous dinitrogen into bioavailable ammonia. The perception of host-derived flavonoids is a key initial step for the signaling events that must occur preceding the formation of the nitrogen-fixing organ. Past work investigating chemotaxis - the directed movement of bacteria through chemical gradients - of Bradyrhizobium japonicum, Rhizobium leguminosarum, and Rhizobium meliloti discovered chemotaxis to various organic compounds, but focused on chemotaxis to flavonoids because of their relevance to the symbiosis biochemistry. The current work sought to replicate and further examine Sinorhizobium (Ensifer) meliloti chemotaxis to the flavonoids previously thought to act as the principal attractant molecules prior to the initial signaling stage. Exudate from germinating alfalfa seedlings was analyzed for composition and quantities of different flavonoid compounds using mass spectrometry. The abundance of four prevalent flavonoids in germinating alfalfa seed exudates (SEs) was at a ratio of 200:5:5:1 for hyperoside, luteolin, luteolin-7-glucoside, and chrysoeriol. Using quantitative chemotaxis capillary assays, we did not detect chemotaxis of motile S. meliloti cells to these, and two other flavonoids identified in seed exudates. In support of these findings, the flavonoid fraction of seed exudates was found to be an insignificant attractant relative to the more hydrophilic fraction. Additionally, we observed that cosolvents commonly used to dissolve flavonoids confound the results. We propose that the role flavonoids play in S. meliloti chemotaxis is insignificant relative to other components released by alfalfa seeds.

9.
Sci Rep ; 10(1): 679, 2020 01 20.
Article in English | MEDLINE | ID: mdl-31959762

ABSTRACT

While the effects of phytohormones on plant gene expression have been well characterized, comparatively little is known about how hormones influence metabolite profiles. This study examined the effects of elevated auxin and ethylene on the metabolome of Arabidopsis roots using a high-resolution 24 h time course, conducted in parallel to time-matched transcriptomic analyses. Mass spectrometry using orthogonal UPLC separation strategies (reversed phase and HILIC) in both positive and negative ionization modes was used to maximize identification of metabolites with altered levels. The findings show that the root metabolome responds rapidly to hormone stimulus and that compounds belonging to the same class of metabolites exhibit similar changes. The responses were dominated by changes in phenylpropanoid, glucosinolate, and fatty acid metabolism, although the nature and timing of the response was unique for each hormone. These alterations in the metabolome were not directly predicted by the corresponding transcriptome data, suggesting that post-transcriptional events such as changes in enzyme activity and/or transport processes drove the observed changes in the metabolome. These findings underscore the need to better understand the biochemical mechanisms underlying the temporal reconfiguration of plant metabolism, especially in relation to the hormone-metabolome interface and its subsequent physiological and morphological effects.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Ethylenes/metabolism , Gene Expression Profiling/methods , Genes, Plant/genetics , Indoleacetic Acids/metabolism , Metabolome , Plant Roots/genetics , Plant Roots/metabolism , Transcriptome , Fatty Acids/metabolism , Gene Expression , Glucosinolates/metabolism , Mass Spectrometry/methods , Plant Growth Regulators/physiology , Time Factors
10.
J Bacteriol ; 200(23)2018 12 01.
Article in English | MEDLINE | ID: mdl-30201781

ABSTRACT

Sinorhizobium meliloti is a soil-dwelling endosymbiont of alfalfa that has eight chemoreceptors to sense environmental stimuli during its free-living state. The functions of two receptors have been characterized, with McpU and McpX serving as general amino acid and quaternary ammonium compound sensors, respectively. Both receptors use a dual Cache (calcium channels and chemotaxis receptors) domain for ligand binding. We identified that the ligand-binding periplasmic region (PR) of McpV contains a single Cache domain. Homology modeling revealed that McpVPR is structurally similar to a sensor domain of a chemoreceptor with unknown function from Anaeromyxobacter dehalogenans, which crystallized with acetate in its binding pocket. We therefore assayed McpV for carboxylate binding and S. meliloti for carboxylate sensing. Differential scanning fluorimetry identified 10 potential ligands for McpVPR Nine of these are monocarboxylates with chain lengths between two and four carbons. We selected seven compounds for capillary assay analysis, which established positive chemotaxis of the S. meliloti wild type, with concentrations of peak attraction at 1 mM for acetate, propionate, pyruvate, and glycolate, and at 100 mM for formate and acetoacetate. Deletion of mcpV or mutation of residues essential for ligand coordination abolished positive chemotaxis to carboxylates. Using microcalorimetry, we determined that dissociation constants of the seven ligands with McpVPR were in the micromolar range. An McpVPR variant with a mutation in the ligand coordination site displayed no binding to isobutyrate or propionate. Of all the carboxylates tested as attractants, only glycolate was detected in alfalfa seed exudates. This work examines the relevance of carboxylates and their sensor to the rhizobium-legume interaction.IMPORTANCE Legumes share a unique association with certain soil-dwelling bacteria known broadly as rhizobia. Through concerted interorganismal communication, a legume allows intracellular infection by its cognate rhizobial species. The plant then forms an organ, the root nodule, dedicated to housing and supplying fixed carbon and nutrients to the bacteria. In return, the engulfed rhizobia, differentiated into bacteroids, fix atmospheric N2 into ammonium for the plant host. This interplay is of great benefit to the cultivation of legumes, such as alfalfa and soybeans, and is initiated by chemotaxis to the host plant. This study on carboxylate chemotaxis contributes to the understanding of rhizobial survival and competition in the rhizosphere and aids the development of commercial inoculants.


Subject(s)
Bacterial Proteins/metabolism , Carboxylic Acids/metabolism , Chemotactic Factors/metabolism , Chemotaxis , Medicago sativa/microbiology , Sinorhizobium meliloti/physiology , Amino Acids/metabolism , Bacterial Proteins/genetics , Calcium Channels , Calorimetry , Fluorometry , Ligands , Models, Molecular , Periplasm/metabolism , Plant Exudates , Protein Domains , Sinorhizobium meliloti/genetics , Symbiosis
11.
PeerJ ; 6: e5598, 2018.
Article in English | MEDLINE | ID: mdl-30258711

ABSTRACT

Plant flavonoid metabolism has served as a platform for understanding a range of fundamental biological phenomena, including providing some of the early insights into the subcellular organization of metabolism. Evidence assembled over the past three decades points to the organization of the component enzymes as a membrane-associated complex centered on the entry-point enzyme, chalcone synthase (CHS), with flux into branch pathways controlled by competitive protein interactions. Flavonoid enzymes have also been found in the nucleus in a variety of plant species, raising the possibility of alternative, or moonlighting functions for these proteins in this compartment. Here, we present evidence that CHS interacts with MOS9, a nuclear-localized protein that has been linked to epigenetic control of R genes that mediate effector-triggered immunity. Overexpression of MOS9 results in a reduction of CHS transcript levels and a metabolite profile that substantially intersects with the effects of a null mutation in CHS. These results suggest that the MOS9-CHS interaction may point to a previously-unknown mechanism for controlling the expression of the highly dynamic flavonoid pathway.

12.
Proteomes ; 5(3)2017 Jul 10.
Article in English | MEDLINE | ID: mdl-28698516

ABSTRACT

Auxin is involved in many aspects of root development and physiology, including the formation of lateral roots. Improving our understanding of how the auxin response is mediated at the protein level over time can aid in developing a more complete molecular framework of the process. This study evaluates the effects of exogenous auxin treatment on the Arabidopsis root proteome after exposure of young seedlings to auxin for 8, 12, and 24 h, a timeframe permitting the initiation and full maturation of individual lateral roots. Root protein extracts were processed to peptides, fractionated using off-line strong-cation exchange, and analyzed using ultra-performance liquid chromatography and data independent acquisition-based mass spectrometry. Protein abundances were then tabulated using label-free techniques and evaluated for significant changes. Approximately 2000 proteins were identified during the time course experiment, with the number of differences between the treated and control roots increasing over the 24 h time period, with more proteins found at higher abundance with exposure to auxin than at reduced abundance. Although the proteins identified and changing in levels at each time point represented similar biological processes, each time point represented a distinct snapshot of the response. Auxin coordinately regulates many physiological events in roots and does so by influencing the accumulation and loss of distinct proteins in a time-dependent manner. Data are available via ProteomeXchange with the identifier PXD001400.

13.
Phytochemistry ; 130: 119-27, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27291343

ABSTRACT

Plant reproductive and vegetative tissues often use the same biochemical pathways to produce specialized metabolites. In such cases, selection acting on the synthesis of specific products in a particular tissue could result in correlated changes in other products of the pathway, both in the same tissue and in other tissues. This study examined how changes in floral anthocyanin pigmentation affect the production of other compounds of the flavonoid pathway in flowers and in leaves. Focusing on the Iochrominae, a clade of Solanaceae with a wide range of flower colors, liquid chromatography coupled with mass spectrometry and UV detection was used to profile and quantify the variation in two classes of flavonoids, anthocyanins and flavonols. Purple, red, orange and white-flowered Iochrominae produced all of the six common anthocyanidin types, as well as several classes of flavonols. Differences in anthocyanin and flavonol production were significantly correlated in flowers, particularly with respect to B ring hydroxylation pattern. However, these differences in floral flavonoids were not strongly related to differences in leaf chemistry. Specifically, most species made only flavonols (not anthocyanins) in leaves, and these comprised the two most common flavonols, quercetin and kaempferol, regardless of the color of the flower. These results suggest that shifts in flower color may occur without significant pleiotropic consequences for flavonoid production in vegetative tissues. Similar studies in other systems will be important for testing the generality of this pattern in other groups of flowering plants.


Subject(s)
Anthocyanins/metabolism , Flavonoids/metabolism , Flowers/chemistry , Plant Leaves/chemistry , Solanaceae/chemistry , Biological Evolution , Flavonoids/analysis , Kaempferols/metabolism , Nuclear Magnetic Resonance, Biomolecular , Pigments, Biological/metabolism , Quercetin/analysis , Solanaceae/metabolism
14.
J Agric Food Chem ; 63(44): 9879-87, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26487475

ABSTRACT

Untargeted metabolomic profiling using liquid chromatography-mass spectrometry (LC-MS) was applied to lipid-depleted methanolic extracts of soybean seeds utilizing orthogonal chromatographic separations (reversed-phase and hydrophilic interaction) in both positive and negative ionization modes. Four near-isogenic lines (NILs) differing in mutations for two genes encoding highly homologous multidrug resistant proteins (MRPs) were evaluated. The double mutant exhibited a low phytate phenotype, whereas the other three NILs, the two single mutants and the wild type, did not. Principal component analysis (PCA) of the four LC-MS data sets fully separated the low phytate line from the other three. While the levels of neutral oligosaccharides were the same for all lines, there were significant metabolite differences residing in the levels of malonyl isoflavones, soyasaponins, and arginine. Two methanol-soluble polypeptides were also found as differing in abundance levels, one of which was identified as the allergen Gly m 1.


Subject(s)
Glycine max/chemistry , Phytic Acid/chemistry , Plant Extracts/chemistry , Chromatography, Liquid , Isoflavones/chemistry , Isoflavones/metabolism , Metabolomics , Mutation , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Phytic Acid/metabolism , Plant Extracts/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Saponins/chemistry , Saponins/metabolism , Seeds/chemistry , Seeds/metabolism , Glycine max/classification , Glycine max/genetics , Glycine max/metabolism , Tandem Mass Spectrometry
15.
Phytochemistry ; 115: 112-20, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25771508

ABSTRACT

Several xylem-associated regulatory genes have been identified that control processes associated with wood formation in poplar. Prominent among these are the NAC domain transcription factors (NACs). Here, the putative involvement of Populus NAC154, a co-ortholog of the Arabidopsis gene SND2, was evaluated as a regulator of "secondary" biosynthetic processes in stem internode tissues by interrogating aqueous methanolic extracts from control and transgenic trees. Comprehensive untargeted metabolite profiling was accomplished with a liquid chromatography-mass spectrometry platform that utilized two different chromatographic supports (HILIC and reversed phase) and both positive and negative ionization modes. Evaluation of current and previous year tissues provided datasets for assessing the effects of NAC154 overexpression in wood maturation processes. Phenolic glycoside levels as well as those of oligolignols, sucrose and arginine were modulated with phenotypic and chemotypic traits exhibiting similar trends. Specifically, increased levels of arginine in the NAC154 overexpressing tissues supports a role for the transcription factor in senescence/dormancy-associated processes.


Subject(s)
Arabidopsis/metabolism , Plant Proteins/metabolism , Populus/chemistry , Transcription Factors/genetics , Arabidopsis/genetics , Metabolomics , Molecular Structure , Plant Proteins/genetics , Plant Stems/metabolism , Plants, Genetically Modified/metabolism , Populus/genetics , Salicaceae/chemistry , Transcription Factors/metabolism , Wood/metabolism , Xylem/metabolism
16.
Proc Natl Acad Sci U S A ; 108(44): 18179-84, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-22006310

ABSTRACT

An effective plant alkaloid chemical defense requires a variety of transport processes, but few alkaloid transporters have been characterized at the molecular level. Previously, a gene fragment encoding a putative plasma membrane proton symporter was isolated, because it was coordinately regulated with several nicotine biosynthetic genes. Here, we show that this gene fragment corresponds to a Nicotiana tabacum gene encoding a nicotine uptake permease (NUP1). NUP1 belongs to a plant-specific class of purine uptake permease-like transporters that originated after the bryophytes but before or within the lycophytes. NUP1 expressed in yeast cells preferentially transported nicotine relative to other pyridine alkaloids, tropane alkaloids, kinetin, and adenine. NUP1-GFP primarily localized to the plasma membrane of tobacco Bright Yellow-2 protoplasts. WT NUP1 transcripts accumulated to high levels in the roots, particularly in root tips. NUP1-RNAi hairy roots had reduced NUP1 mRNA accumulation levels, reduced total nicotine levels, and increased nicotine accumulation in the hairy root culture media. Regenerated NUP1-RNAi plants showed reduced foliar and root nicotine levels as well as increased seedling root elongation rates. Thus, NUP1 affected nicotine metabolism, localization, and root growth.


Subject(s)
Alkaloids/metabolism , Nicotiana/metabolism , Nicotine/metabolism , Genes, Plant , Molecular Sequence Data , Nicotiana/genetics
17.
Phytochemistry ; 68(4): 454-63, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17174363

ABSTRACT

The oxidative deamination of N-methylputrescine is an essential step in both pyridine and tropane alkaloid biosynthesis. Reverse genetic approaches have not resulted in the cloning of a methylputrescine oxidase gene (MPO). However, we have used a homology-based approach to clone a full-length tobacco MPO1 cDNA. The MPO1 gene is part of a small multigene family comprised of approximately six members. MPO1-like transcript levels increased in roots that were either deprived of auxin or treated with methyl jasmonic acid. Similar to other known nicotine biosynthetic genes in domesticated tobacco, MPO1-like mRNA levels were lower in roots with the mutant a and b alleles. The MPO1 protein was expressed in bacteria as a recombinant Thioredoxin-His(6)-MPO1 fusion protein. The recombinant MPO1 protein utilized N-methylputrescine more efficiently than other diamines. Therefore, the kinetic properties of the MPO1 enzyme may play an important role in determining the pyridine alkaloid profiles observed in tobacco roots.


Subject(s)
Nicotiana/enzymology , Oxidoreductases/genetics , Transcription, Genetic , Amino Acid Sequence , Base Sequence , Conserved Sequence , DNA, Plant/genetics , Molecular Sequence Data , Multigene Family , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/enzymology , RNA, Messenger/genetics , RNA, Plant/genetics , Sequence Alignment , Nicotiana/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...