Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Planta ; 242(2): 407-26, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25998524

ABSTRACT

MAIN CONCLUSION: Provides a first comprehensive review of integrated physiological and molecular aspects of desiccation tolerance Xerophyta viscosa. A synopsis of biotechnological studies being undertaken to improve drought tolerance in maize is given. Xerophyta viscosa (Baker) is a monocotyledonous resurrection plant from the family Vellociacea that occurs in summer-rainfall areas of South Africa, Lesotho and Swaziland. It inhabits rocky terrain in exposed grasslands and frequently experiences periods of water deficit. Being a resurrection plant it tolerates the loss of 95% of total cellular water, regaining full metabolic competency within 3 days of rehydration. In this paper, we review some of the molecular and physiological adaptations that occur during various stages of dehydration of X. viscosa, these being functionally grouped into early and late responses, which might be relevant to the attainment of desiccation tolerance. During early drying (to 55% RWC) photosynthesis is shut down, there is increased presence and activity of housekeeping antioxidants and a redirection of metabolism to the increased formation of sucrose and raffinose family oligosaccharides. Other metabolic shifts suggest water replacement in vacuoles proposed to facilitate mechanical stabilization. Some regulatory processes observed include increased presence of a linker histone H1 variant, a Type 2C protein phosphatase, a calmodulin- and an ERD15-like protein. During the late stages of drying (to 10% RWC) there was increased expression of several proteins involved in signal transduction, and retroelements speculated to be instrumental in gene silencing. There was induction of antioxidants not typically found in desiccation-sensitive systems, classical stress-associated proteins (HSP and LEAs), proteins involved in structural stabilization and those associated with changes in various metabolite pools during drying. Metabolites accumulated in this stage are proposed, inter alia, to facilitate subcellular stabilization by vitrification process which can include glass- and ionic liquid formation.


Subject(s)
Adaptation, Physiological , Craterostigma/physiology , Desiccation , Biotechnology , Craterostigma/anatomy & histology , Craterostigma/classification , Craterostigma/genetics , Oxidative Stress , Stress, Physiological
2.
ISRN Obstet Gynecol ; 2011: 365894, 2011.
Article in English | MEDLINE | ID: mdl-21789284

ABSTRACT

Maternal vitamin B12 deficiency during pregnancy is an independent risk factor for neural tube defects and other neurological problems in infants. We determined the vitamin B12 status of 143 pregnant women in Nigeria representing all trimesters who presented to an antenatal clinic in Jos, Nigeria, using holotranscobalamin II levels (holoTCII), which is a measure of the vitamin B12 that is available for uptake into tissues. The holoTCII concentration ranged from 13 to 128 pmol/L. Using a cutoff of 40 pmol/L, 36% of the women were classified as vitamin B12-deficient. HoloTCII concentrations correlated negatively with plasma homocysteine levels (r = -0.24, P = 0.003) and positively with red blood cell folate concentrations (r = 0.28, P < 0.001). These data underscore the importance of supplementing pregnant women in Nigeria with vitamin B12 in order to ensure adequate vitamin B12 status and decrease the risk for neural tube defects.

SELECTION OF CITATIONS
SEARCH DETAIL
...