Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroreport ; 17(17): 1829-33, 2006 Nov 27.
Article in English | MEDLINE | ID: mdl-17164673

ABSTRACT

Visual stimulation by repetitive flashes of light can lead to an entrainment of the alpha rhythm in electroencephalogram recordings (also called photic driving). We report a comparison of simultaneously recorded electric and magnetic data in a photic driving experiment, adapted to the individual alpha rhythm of 10 healthy volunteers. We show that there is a stronger frequency entrainment in magnetoencephalogram than in electroencephalogram recordings in all volunteers, which indicates a possible tangential brain activity underlying the dominant entrainment effect. The entrainment in the magnetoencephalogram lasts over significantly more frequencies and is most effective in the region around the individual alpha and a half alpha. For different channels, we found different degrees of entrainment showing topological and time-varying properties.


Subject(s)
Alpha Rhythm , Brain Mapping , Electroencephalography , Evoked Potentials, Visual/physiology , Magnetoencephalography , Adult , Electrodes , Female , Humans , Male , Photic Stimulation/methods
2.
Biomagn Res Technol ; 2(1): 6, 2004 Sep 01.
Article in English | MEDLINE | ID: mdl-15341659

ABSTRACT

BACKGROUND: Magnetically marked capsules serve for the analysis of peristalsis and throughput times within the intestinal tract. Moreover, they can be used for the targeted disposal of drugs. The capsules get localized in time by field measurements with a superconducting quantum interference device (SQUID) magnetometer array. Here it is important to ensure an online localization with high speed and high suppression of disturbing fields. In this article we use multipole expansions for the simultaneous localization and suppression of disturbing fields. METHODS: We expand the measurement data in terms of inner and outer multipoles. Thereby we obtain directly a separation of marker field and outer disturbing fields. From the inner dipoles and quadrupoles we compute the magnetization and position of the capsule. The outer multipoles get eliminated. RESULTS: The localization goodness has been analyzed depending on the order of the multipoles used and depending on the systems noise level. We found upper limits of the noise level for the usage of certain multipole moments. Given a signal to noise ratio of 40 and utilizing inner dipoles and quadrupoles and outer dipoles, the method enables an accuracy of 5 mm with a speed of 10 localizations per second. CONCLUSION: The multipole localization is an effective method and is capable of online-tracking magnetic markers.

SELECTION OF CITATIONS
SEARCH DETAIL
...