Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
1.
J Clin Med ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38930106

ABSTRACT

Background: Arterio-venous fistulas (AVF) are used as first-line access for hemodialysis (HD) in the pediatric population. The aim of this investigation was to describe a single-center experience in the creation of AVF, together with its patency in children. Methods: This single-center retrospective study included all patients aged ≤18 years with AVFs created between 1993 and 2023. The collected data included patients' demographics, hemodialysis history, intraoperative data, and required reinterventions in order to determine the impact of these variables on primary, primary-assisted, and secondary patency. Results: Fifty-seven patients were analyzed with a median age of 15 years (range, 7-18 years). Fifty-four forearm and four upper arm fistulas were performed. The median follow-up was 6.9 years (range, 0-23 years). The primary failure rate was 10.5%. The primary patency rate was 67.6%, 53.6%, 51.4%, and 38.1% after 1, 3, 5, and 10 years; primary-assisted patency was 72.9%, 62.8%, 60.6%, and 41.5%; and secondary patency was 87.3%, 81.3%, 76.8%, and 66.6% after 1, 3, 5, and 10 years in the studied population. Conclusions: AVFs showed an acceptable rate of primary failure and excellent long-term patency. In this context, AVFs are an appropriate option for HD access, especially in pediatric patients.

2.
Health Sci Rep ; 7(3): e1935, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524771

ABSTRACT

Background: Congenital lower urinary tract obstruction (LUTO) describes a heterogeneous group of congenital malformations. Posterior urethral valves (PUV) represent the most common entity. Familial occurrence has been described, suggestive of underlying genetic factors. LUTO can occur in various degrees of severity. In severe forms, oligohydramnios, pulmonary hypoplasia, and renal damage can occur resulting in high pre- and postnatal mortality. On the contrary, mild forms may become apparent through recurrent urinary tract infections. Such high phenotypic variability has been described even within the same family. Here, we systematically screened parents of affected children for symptoms of LUTO. Methods: The study population consisted of parents of LUTO patients. Fathers over 50 years of age were excluded, to avoid inclusion of male phenocopies due to early prostatic hypertrophy. Uroflowmetry, ultrasonography for residual urine and hydronephrosis, and laboratory examination of standard renal retention parameters were assessed, and a detailed patient history was taken, including the assessment of the International Prostate Symptom Score. Results: Twenty-nine of 42 LUTO families enrolled were found eligible for the present study. Of these, we identified five families in which the father had already been diagnosed with infravesical obstruction (17%). Of the remaining families, nine agreed to participate in our study. Of these nine families, eight families had a child affected with PUV and one family had a child with urethral stenosis. Here, we found two fathers and one mother with symptoms of LUTO suggestive of mild LUTO and one family, in which the unborn male fetal brother of the affected index patient was also diagnosed prenatally with LUTO. Conclusion: Our observations suggest that LUTOs have a higher heritability than previously thought and that first-degree relatives of the affected should be clinically assessed for symptoms of LUTO.

3.
Cells ; 13(2)2024 01 12.
Article in English | MEDLINE | ID: mdl-38247840

ABSTRACT

Besides visceral heterotaxia, Pkd1l1 null mouse embryos exhibit general edema and perinatal lethality. In humans, congenital chylothorax (CCT) is a frequent cause of fetal hydrops. In 2021, Correa and colleagues reported ultrarare compound heterozygous variants in PKD1L1 exhibiting in two consecutive fetuses with severe hydrops, implicating a direct role of PKD1L1 in fetal hydrops formation. Here, we performed an exome survey and identified ultrarare compound heterozygous variants in PKD1L1 in two of the five case-parent trios with CCT. In one family, the affected carried the ultrarare missense variants c.1543G>A(p.Gly515Arg) and c.3845T>A(p.Val1282Glu). In the other family, the affected carried the ultrarare loss-of-function variant (LoF) c.863delA(p.Asn288Thrfs*3) and the ultrarare missense variant c.6549G>T(p.Gln2183His). Investigation of the variants' impact on PKD1L1 protein localization suggests the missense variants cause protein dysfunction and the LoF variant causes protein mislocalization. Further analysis of Pkd1l1 mutant mouse embryos revealed about 20% of Pkd1l1-/- embryos display general edema and pleural effusion at 14.5 dpc. Immunofluorescence staining at 14.5 dpc in Pkd1l1-/- embryos displayed both normal and massively altered lymphatic vessel morphologies. Together, our studies suggest the implication of PKD1L1 in congenital lymphatic anomalies, including CCTs.


Subject(s)
Chylothorax , Animals , Female , Humans , Mice , Pregnancy , Chylothorax/genetics , Fetus , Genetic Diseases, X-Linked , Hydrops Fetalis , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Knockout
4.
Biomolecules ; 13(7)2023 07 13.
Article in English | MEDLINE | ID: mdl-37509153

ABSTRACT

BACKGROUND: The bladder exstrophy-epispadias complex (BEEC) is a spectrum of congenital abnormalities that involves the abdominal wall, the bony pelvis, the urinary tract, the external genitalia, and, in severe cases, the gastrointestinal tract as well. METHODS: Herein, we performed an exome analysis of case-parent trios with cloacal exstrophy (CE), the most severe form of the BEEC. Furthermore, we surveyed the exome of a sib-pair presenting with classic bladder exstrophy (CBE) and epispadias (E) only. Moreover, we performed large-scale re-sequencing of CBE individuals for novel candidate genes that were derived from the current exome analysis, as well as for previously reported candidate genes within the CBE phenocritical region, 22q11.2. RESULTS: The exome survey in the CE case-parent trios identified two candidate genes harboring de novo variants (NR1H2, GKAP1), four candidate genes with autosomal-recessive biallelic variants (AKR1B10, CLSTN3, NDST4, PLEKHB1) and one candidate gene with suggestive uniparental disomy (SVEP1). However, re-sequencing did not identify any additional variant carriers in these candidate genes. Analysis of the affected sib-pair revealed no candidate gene. Re-sequencing of the genes within the 22q11.2 CBE phenocritical region identified two highly conserved frameshift variants that led to early termination in two independent CBE males, in LZTR1 (c.978_985del, p.Ser327fster6) and in SLC7A4 (c.1087delC, p.Arg363fster68). CONCLUSIONS: According to previous studies, our study further implicates LZTR1 in CBE formation. Exome analysis-derived candidate genes from CE individuals may not represent a frequent indicator for other BEEC phenotypes and warrant molecular analysis before their involvement in disease formation can be assumed.


Subject(s)
Bladder Exstrophy , Epispadias , Male , Humans , Bladder Exstrophy/genetics , Epispadias/genetics , Exome/genetics , Urinary Bladder/metabolism , Calcium-Binding Proteins/genetics , Membrane Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Mol Cell Pediatr ; 10(1): 2, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36977792

ABSTRACT

Advances in molecular biology are improving our understanding of the genetic causes underlying human congenital lower urinary tract (i.e., bladder and urethral) malformations. This has recently led to the identification of the first disease-causing variants in the gene BNC2 for isolated lower urinary tract anatomical obstruction (LUTO), and of WNT3 and SLC20A1 as genes implicated in the pathogenesis of the group of conditions called bladder-exstrophy-epispadias complex (BEEC). Implicating candidate genes from human genetic data requires evidence of their influence on lower urinary tract development and evidence of the found genetic variants' pathogenicity. The zebrafish (Danio rerio) has many advantages for use as a vertebrate model organism for the lower urinary tract. Rapid reproduction with numerous offspring, comparable anatomical kidney and lower urinary tract homology, and easy genetic manipulability by Morpholino®-based knockdown or CRISPR/Cas editing are among its advantages. In addition, established marker staining for well-known molecules involved in urinary tract development using whole-mount in situ hybridization (WISH) and the usage of transgenic lines expressing fluorescent protein under a tissue-specific promoter allow easy visualization of phenotypic abnormalities of genetically modified zebrafish. Assays to examine the functionality of the excretory organs can also be modeled in vivo with the zebrafish. The approach of using these multiple techniques in zebrafish not only enables rapid and efficient investigation of candidate genes for lower urinary tract malformations derived from human data, but also cautiously allows transferability of causality from a non-mammalian vertebrate to humans.

6.
J Med Genet ; 60(6): 587-596, 2023 06.
Article in English | MEDLINE | ID: mdl-36379543

ABSTRACT

BACKGROUND: SHROOM4 is thought to play an important role in cytoskeletal modification and development of the early nervous system. Previously, single-nucleotide variants (SNVs) or copy number variations (CNVs) in SHROOM4 have been associated with the neurodevelopmental disorder Stocco dos Santos syndrome, but not with congenital anomalies of the urinary tract and the visceral or the cardiovascular system. METHODS: Here, exome sequencing and CNV analyses besides expression studies in zebrafish and mouse and knockdown (KD) experiments using a splice blocking morpholino in zebrafish were performed to study the role of SHROOM4 during embryonic development. RESULTS: In this study, we identified putative disease-causing SNVs and CNVs in SHROOM4 in six individuals from four families with congenital anomalies of the urinary tract and the anorectal, cardiovascular and central nervous systems (CNS). Embryonic mouse and zebrafish expression studies showed Shroom4 expression in the upper and lower urinary tract, the developing cloaca, the heart and the cerebral CNS. KD studies in zebrafish larvae revealed pronephric cysts, anomalies of the cloaca and the heart, decreased eye-to-head ratio and higher mortality compared with controls. These phenotypes could be rescued by co-injection of human wild-type SHROOM4 mRNA and morpholino. CONCLUSION: The identified SNVs and CNVs in affected individuals with congenital anomalies of the urinary tract, the anorectal, the cardiovascular and the central nervous systems, and subsequent embryonic mouse and zebrafish studies suggest SHROOM4 as a developmental gene for different organ systems.


Subject(s)
Cardiovascular System , Urinary Tract , Pregnancy , Female , Humans , Animals , Mice , Zebrafish/genetics , DNA Copy Number Variations , Morpholinos , Urinary Tract/abnormalities , Central Nervous System
7.
Pediatr Nephrol ; 38(4): 1223-1232, 2023 04.
Article in English | MEDLINE | ID: mdl-36053356

ABSTRACT

BACKGROUND: Intrauterine growth restriction (IUGR) has been associated with changes in kidney anatomy, nephrogenesis and the vascular system, resulting in secondary arterial hypertension and kidney damage in adulthood. Here, we compare routine clinical and metabolic parameters between IUGR and non-IUGR study participants in the neonatal and early infant period. METHODS: A total of 39 IUGR and 60 non-IUGR neonates were included during an 18-month study period. We compared blood pressure, serum creatinine (SCr), urea nitrogen (BUN), urinary albumin, α-1-microglobulin, transferrin, immunoglobulin G and total protein excretion in spontaneous urine normalized by urine creatinine level during the hospital stay. RESULTS: There were no significant differences in mean values of blood pressure and urinary protein excretion between cases and controls. SCr and BUN levels were lower in the IUGR group compared to the non-IUGR group. CONCLUSIONS: The lower levels of SCr and BUN may be attributed to lower liver and muscle mass in IUGR neonates and young infants. Biomarkers currently used in routine clinical care do not allow early postnatal prediction of higher blood pressure or worse kidney function due to IUGR, so further studies are needed. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Hypertension , Kidney Diseases , Infant, Newborn , Female , Infant , Humans , Fetal Growth Retardation , Blood Pressure , Kidney , Kidney Diseases/diagnosis , Kidney Diseases/etiology
8.
Eur J Hum Genet ; 31(1): 105-111, 2023 01.
Article in English | MEDLINE | ID: mdl-36319675

ABSTRACT

Anorectal malformations (ARM) represent a spectrum of rare malformations originating from a perturbated development of the embryonic hindgut. Approximately 60% occur as a part of a defined genetic syndrome or within the spectrum of additional congenital anomalies. Rare copy number variations (CNVs) have been associated with both syndromic and non-syndromic forms. The present study represents the largest study to date to explore the contribution of CNVs to the expression of ARMs. SNP-array-based molecular karyotyping was applied in 450 individuals with ARM and 4392 healthy controls. CNVs were identified from raw intensity data using PennCNV. Overlapping CNVs between cases and controls were discarded. Remaining CNVs were filtered using a stringent filter algorithm of nine filter steps. Prioritized CNVs were confirmed using qPCR. Filtering prioritized and qPCR confirmed four microscopic chromosomal anomalies and nine submicroscopic CNVs comprising seven microdeletions (del2p13.2, del4p16.2, del7q31.33, del9p24.1, del16q12.1, del18q32, del22q11.21) and two microduplications (dup2p13.2, dup17q12) in 14 individuals (12 singletons and one affected sib-pair). Within these CNVs, based on their embryonic expression data and function, we suggest FOXK2, LPP, and SALL3 as putative candidate genes. Overall, our CNV analysis identified putative microscopic and submicroscopic chromosomal rearrangements in 3% of cases. Functional characterization and re-sequencing of suggested candidate genes is warranted.


Subject(s)
Anorectal Malformations , DNA Copy Number Variations , Humans , Anorectal Malformations/genetics , Chromosome Aberrations , Karyotyping
9.
Commun Biol ; 5(1): 1203, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36352089

ABSTRACT

Classic bladder exstrophy represents the most severe end of all human congenital anomalies of the kidney and urinary tract and is associated with bladder cancer susceptibility. Previous genetic studies identified one locus to be involved in classic bladder exstrophy, but were limited to a restrict number of cohort. Here we show the largest classic bladder exstrophy genome-wide association analysis to date where we identify eight genome-wide significant loci, seven of which are novel. In these regions reside ten coding and four non-coding genes. Among the coding genes is EFNA1, strongly expressed in mouse embryonic genital tubercle, urethra, and primitive bladder. Re-sequence of EFNA1 in the investigated classic bladder exstrophy cohort of our study displays an enrichment of rare protein altering variants. We show that all coding genes are expressed and/or significantly regulated in both mouse and human embryonic developmental bladder stages. Furthermore, nine of the coding genes residing in the regions of genome-wide significance are differentially expressed in bladder cancers. Our data suggest genetic drivers for classic bladder exstrophy, as well as a possible role for these drivers to relevant bladder cancer susceptibility.


Subject(s)
Bladder Exstrophy , Urinary Bladder Neoplasms , Humans , Animals , Mice , Bladder Exstrophy/genetics , Bladder Exstrophy/complications , Genome-Wide Association Study , Urinary Bladder Neoplasms/genetics , Transcriptome , Ephrin-A1/genetics
10.
Front Pediatr ; 10: 988374, 2022.
Article in English | MEDLINE | ID: mdl-36238604

ABSTRACT

Congenital lower urinary tract obstructions (LUTO) are most often caused by posterior urethral valves (PUV), a male limited anatomical obstruction of the urethra affecting 1 in 4,000 male live births. Little is known about the genetic background of PUV. Here, we report the largest genome-wide association study (GWAS) for PUV in 4 cohorts of patients and controls. The final meta-analysis included 756 patients and 4,823 ethnicity matched controls and comprised 5,754,208 variants that were genotyped or imputed and passed quality control in all 4 cohorts. No genome-wide significant locus was identified, but 33 variants showed suggestive significance (P < 1 × 10-5). When considering only loci with multiple variants residing within < 10 kB of each other showing suggestive significance and with the same effect direction in all 4 cohorts, 3 loci comprising a total of 9 variants remained. These loci resided on chromosomes 13, 16, and 20. The present GWAS and meta-analysis is the largest genetic study on PUV performed to date. The fact that no genome-wide significant locus was identified, can be explained by lack of power or may indicate that common variants do not play a major role in the etiology of PUV. Nevertheless, future studies are warranted to replicate and validate the 3 loci that yielded suggestive associations.

11.
Eur Urol Open Sci ; 44: 106-112, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36185583

ABSTRACT

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis: We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.

12.
Elife ; 112022 09 20.
Article in English | MEDLINE | ID: mdl-36124557

ABSTRACT

Posterior urethral valves (PUV) are the commonest cause of end-stage renal disease in children, but the genetic architecture of this rare disorder remains unknown. We performed a sequencing-based genome-wide association study (seqGWAS) in 132 unrelated male PUV cases and 23,727 controls of diverse ancestry, identifying statistically significant associations with common variants at 12q24.21 (p=7.8 × 10-12; OR 0.4) and rare variants at 6p21.1 (p=2.0 × 10-8; OR 7.2), that were replicated in an independent European cohort of 395 cases and 4151 controls. Fine mapping and functional genomic data mapped these loci to the transcription factor TBX5 and planar cell polarity gene PTK7, respectively, the encoded proteins of which were detected in the developing urinary tract of human embryos. We also observed enrichment of rare structural variation intersecting with candidate cis-regulatory elements, particularly inversions predicted to affect chromatin looping (p=3.1 × 10-5). These findings represent the first robust genetic associations of PUV, providing novel insights into the underlying biology of this poorly understood disorder and demonstrate how a diverse ancestry seqGWAS can be used for disease locus discovery in a rare disease.


Subject(s)
Genome-Wide Association Study , T-Box Domain Proteins/genetics , Urinary Tract , Cell Adhesion Molecules/genetics , Child , Chromatin , Humans , Male , Receptor Protein-Tyrosine Kinases/genetics , Transcription Factors/genetics
13.
Nephrol Dial Transplant ; 37(12): 2351-2362, 2022 11 23.
Article in English | MEDLINE | ID: mdl-35772019

ABSTRACT

Kidney dysplasia is one of the most frequent causes of chronic kidney failure in children. While dysplasia is a histological diagnosis, the term 'kidney dysplasia' is frequently used in daily clinical life without histopathological confirmation. Clinical parameters of kidney dysplasia have not been clearly defined, leading to imprecise communication amongst healthcare professionals and patients. This lack of consensus hampers precise disease understanding and the development of specific therapies. Based on a structured literature search, we here suggest a common basis for clinical, imaging, genetic, pathological and basic science aspects of non-obstructive kidney dysplasia associated with functional kidney impairment. We propose to accept hallmark sonographic findings as surrogate parameters defining a clinical diagnosis of dysplastic kidneys. We suggest differentiated clinical follow-up plans for children with kidney dysplasia and summarize established monogenic causes for non-obstructive kidney dysplasia. Finally, we point out and discuss research gaps in the field.


Subject(s)
Kidney Diseases , Renal Insufficiency , Urogenital Abnormalities , Child , Humans , Kidney/pathology , Kidney Diseases/pathology , Renal Insufficiency/pathology
14.
Eur J Hum Genet ; 30(8): 946-954, 2022 08.
Article in English | MEDLINE | ID: mdl-35474353

ABSTRACT

The birth prevalence of laterality defects is about 1.1/10,000 comprising different phenotypes ranging from situs inversus totalis to heterotaxy, mostly associated with complex congenital heart defects (CHD) and situs abnormalities such as intestinal malrotation, biliary atresia, asplenia, or polysplenia. A proportion of laterality defects arise in the context of primary ciliary dyskinesia (PCD) accompanied by respiratory symptoms or infertility. In this study, exome sequencing (ES) was performed in 14 case-parent trios/quattros with clinical exclusion of PCD prior to analysis. Moreover, all cases and parents underwent detailed clinical phenotyping including physical examination, echocardiography by a skilled paediatric cardiologist and abdominal ultrasound examinations not to miss mildly affected individuals. Subsequent survey of the exome data comprised filtering for monoallelic de novo, rare biallelic, and X-linked recessive variants. In two families, rare variants of uncertain significance (VUS) in PKD1L1 and ZIC3 were identified. Both genes have been associated with laterality defects. In two of the remaining families, biallelic variants in LMBRD1 and DNAH17, respectively, were prioritized. In another family, an ultra-rare de novo variant in WDR47 was found. Extensive exome survey of 2,109 single exomes of individuals with situs inversus totalis, heterotaxy, or isolated CHD identified two individuals with novel monoallelic variants in WDR47, but no further individuals with biallelic variants in DNAH17 or LMBRD1. Overall, ES of 14 case-parent trios/quattros with cardiovascular laterality defects identified rare VUS in two families in known disease-associated genes PKD1L1 and ZIC3 and suggests DNAH17, LMBRD1, and WDR47 as potential genes involved in laterality defects.


Subject(s)
Heart Defects, Congenital , Heterotaxy Syndrome , Situs Inversus , Exome , Heart Defects, Congenital/genetics , Heterotaxy Syndrome/genetics , Humans , Membrane Proteins/genetics , Nucleocytoplasmic Transport Proteins/genetics , Phenotype , Situs Inversus/genetics , Exome Sequencing
15.
Birth Defects Res ; 114(10): 478-486, 2022 06.
Article in English | MEDLINE | ID: mdl-35362267

ABSTRACT

BACKGROUND: The acronym VATER/VACTERL association describes the combination of at least three component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). Individuals presenting two CFs have been termed VATER/VACTERL-like. Recently, FOXF1, HSPA6, HAAO, KYNU, TRAP1, and ZIC3 have been proposed as candidate genes for VATER/VACTERL, VATER/VACTERL-like, and ARM. Re-sequencing studies identified disease-causing variants in TRAP1 and ZIC3, the contribution of other genes was not independently investigated. One affected variant carrier in FOXF1 was previously identified. Here we re-sequenced FOXF1, HSPA6, HAAO, and KYNU in 522 affected individuals. METHODS: Using molecular inversion probe (MIP) technology, re-sequencing was performed in 63 individuals with VATER/VACTERL association, 313 with VATER/VACTERL-like association, and 146 with ARM. All individuals were of European ethnicity. Variant filtering considered variants with a minor allele frequency (MAF) ≤0.01 for putative recessive disease-genes HSPA6, HAAO, and KYNU. For the putative dominant disease-gene FOXF1 we considered variants with a MAF ≤0.0001. In silico prediction tools were used for further prioritization. RESULTS: Only two variants in FOXF1 in two independently affected individuals [c.443G>T, p.(Cys148Phe); c.850T>C, p.(Tyr284His)] passed our filter criteria. One individual presented with ARM, the second presented with TE and C comprising atrial and ventricular septal defects. Sanger sequencing confirmed both variants but also their inheritance from the healthy mother. CONCLUSION: Our analysis suggests that FOXF1, HSPA6, HAAO and KYNU do not play a major role in the formation of VACTER/VACTERL phenotypes or ARM.


Subject(s)
3-Hydroxyanthranilate 3,4-Dioxygenase , Anorectal Malformations , Forkhead Transcription Factors , HSP90 Heat-Shock Proteins , Limb Deformities, Congenital , 3-Hydroxyanthranilate 3,4-Dioxygenase/genetics , Anal Canal/abnormalities , Anorectal Malformations/genetics , Esophagus/abnormalities , Forkhead Transcription Factors/genetics , HSP90 Heat-Shock Proteins/genetics , Heart Defects, Congenital/genetics , Humans , Kidney/abnormalities , Limb Deformities, Congenital/genetics , Spine/abnormalities , Trachea/abnormalities
16.
HGG Adv ; 3(2): 100093, 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35199045

ABSTRACT

Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) is the most common congenital malformation of the upper digestive tract. This study represents the first genome-wide association study (GWAS) to identify risk loci for EA/TEF. We used a European case-control sample comprising 764 EA/TEF patients and 5,778 controls and observed genome-wide significant associations at three loci. On chromosome 10q21 within the gene CTNNA3 (p = 2.11 × 10-8; odds ratio [OR] = 3.94; 95% confidence interval [CI], 3.10-5.00), on chromosome 16q24 next to the FOX gene cluster (p = 2.25 × 10-10; OR = 1.47; 95% CI, 1.38-1.55) and on chromosome 17q12 next to the gene HNF1B (p = 3.35 × 10-16; OR = 1.75; 95% CI, 1.64-1.87). We next carried out an esophageal/tracheal transcriptome profiling in rat embryos at four selected embryonic time points. Based on these data and on already published data, the implicated genes at all three GWAS loci are promising candidates for EA/TEF development. We also analyzed the genetic EA/TEF architecture beyond the single marker level, which revealed an estimated single-nucleotide polymorphism (SNP)-based heritability of around 37% ± 14% standard deviation. In addition, we examined the polygenicity of EA/TEF and found that EA/TEF is less polygenic than other complex genetic diseases. In conclusion, the results of our study contribute to a better understanding on the underlying genetic architecture of ET/TEF with the identification of three risk loci and candidate genes.

18.
Mol Cell Pediatr ; 8(1): 13, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34608560

ABSTRACT

INTRODUCTION: DSTYK encodes dual serine/threonine and tyrosine protein kinase. DSTYK has been associated with autosomal-dominant congenital anomalies of the kidney and urinary tract and with autosomal-recessive hereditary spastic paraplegia type 23. Here, we report a father and his two dizygotic twin sons carrying a novel heterozygous missense variant in DSTYK, presenting with early onset lower urinary tract dysfunction due to dysfunctional voiding. Moreover, in the later course of the disease, both sons presented with bilateral spasticity in their lower limbs, brisk reflexes, and absence seizures. MATERIALS AND METHODS: Exome sequencing in the affected father and his affected sons was performed. The sons presented clinically with urinary hesitancy, dysfunctional voiding, and night incontinence till adolescence, while the father reported difficulty in voiding. In the sons, cystoscopy excluded urethral valves and revealed hypertrophy of the bladder neck and trabeculated bladder. Additionally, both sons were diagnosed with absence epilepsy in early childhood. Filtering of exome data focused on rare (MAF < 0.01%), autosomal-dominant variants, predicted to be deleterious, residing in highly conserved regions of the exome. RESULTS: Exome analysis identified a novel, heterozygous missense variant (c.271C>A (p.Leu91Met)) in DSTYK segregating with the disease. In silico prediction analyses uniformly rated the variant to be deleterious suggesting the variant to be disease-causing in the family. CONCLUSION: To the best of our knowledge, this is the first report of early onset dysfunctional voiding, seizures, and bilateral spasticity of the lower limbs associated with a novel heterozygous dominant missense variant in DSTYK.

19.
Genes (Basel) ; 12(9)2021 09 20.
Article in English | MEDLINE | ID: mdl-34573432

ABSTRACT

Lower urinary tract obstruction (LUTO) is, in most cases, caused by anatomical blockage of the bladder outlet. The most common form are posterior urethral valves (PUVs), a male-limited phenotype. Here, we surveyed the genome of 155 LUTO patients to identify disease-causing CNVs. Raw intensity data were collected for CNVs detected in LUTO patients and 4.392 healthy controls using CNVPartition, QuantiSNP and PennCNV. Overlapping CNVs between patients and controls were discarded. Additional filtering implicated CNV frequency in the database of genomic variants, gene content and final visual inspection detecting 37 ultra-rare CNVs. After, prioritization qPCR analysis confirmed 3 microduplications, all detected in PUV patients. One microduplication (5q23.2) occurred de novo in the two remaining microduplications found on chromosome 1p36.21 and 10q23.31. Parental DNA was not available for segregation analysis. All three duplications comprised 11 coding genes: four human specific lncRNA and one microRNA. Three coding genes (FBLIM1, SLC16A12, SNCAIP) and the microRNA MIR107 have previously been shown to be expressed in the developing urinary tract of mouse embryos. We propose that duplications, rare or de novo, contribute to PUV formation, a male-limited phenotype.


Subject(s)
Gene Deletion , Gene Duplication , Urethral Obstruction/genetics , DNA Copy Number Variations , Fetal Diseases/genetics , Genome-Wide Association Study , Humans , Male , Urinary Bladder Neck Obstruction/genetics
20.
Am J Med Genet A ; 185(12): 3784-3792, 2021 12.
Article in English | MEDLINE | ID: mdl-34338422

ABSTRACT

The acronym VATER/VACTERL refers to the rare nonrandom association of the following component features (CFs): vertebral defects (V), anorectal malformations (ARM) (A), cardiac anomalies (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb anomalies (L). For the clinical diagnosis, the presence of at least three CFs is required, individuals presenting with only two CFs have been categorized as VATER/VACTERL-like. The majority of VATER/VACTERL individuals displays a renal phenotype. Hitherto, variants in FGF8, FOXF1, HOXD13, LPP, TRAP1, PTEN, and ZIC3 have been associated with the VATER/VACTERL association; however, large-scale re-sequencing could only confirm TRAP1 and ZIC3 as VATER/VACTERL disease genes, both associated with a renal phenotype. In this study, we performed exome sequencing in 21 individuals and their families with a renal VATER/VACTERL or VATER/VACTERL-like phenotype to identify potentially novel genetic causes. Exome analysis identified biallelic and X-chromosomal hemizygous potentially pathogenic variants in six individuals (29%) in B9D1, FREM1, ZNF157, SP8, ACOT9, and TTLL11, respectively. The online tool GeneMatcher revealed another individual with a variant in ZNF157. Our study suggests six biallelic and X-chromosomal hemizygous VATER/VACTERL disease genes implicating all six genes in the expression of human renal malformations.


Subject(s)
Anorectal Malformations/genetics , Esophageal Atresia/genetics , Genetic Predisposition to Disease , Heart Diseases/genetics , Tracheoesophageal Fistula/genetics , Anorectal Malformations/complications , Anorectal Malformations/pathology , Cytoskeletal Proteins/genetics , DNA-Binding Proteins/genetics , Esophageal Atresia/complications , Esophageal Atresia/pathology , Female , Genes, X-Linked/genetics , Genetic Association Studies , HSP90 Heat-Shock Proteins/genetics , Heart Diseases/complications , Heart Diseases/pathology , Hemizygote , Homeodomain Proteins/genetics , Humans , Kidney/abnormalities , Male , Receptors, Interleukin/genetics , Tracheoesophageal Fistula/complications , Tracheoesophageal Fistula/pathology , Transcription Factors/genetics , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...