Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Eur J Immunol ; : e2350946, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38763899

ABSTRACT

Segmented filamentous bacteria (SFB) are members of the commensal intestinal microbiome. They are known to contribute to the postnatal maturation of the gut immune system, but also to augment inflammatory conditions in chronic diseases such as Crohn's disease. Living primary tissue slices are ultrathin multicellular sections of the intestine and provide a unique opportunity to analyze tissue-specific immune responses ex vivo. This study aimed to investigate whether supplementation of the gut flora with SFB promotes T helper 17 (Th17) cell responses in primary intestinal tissue slices ex vivo. Primary tissue slices were prepared from the small intestine of healthy Taconic mice with SFB-positive and SFB-negative microbiomes and stimulated with anti-CD3/CD28 or Concanavalin A. SFB-positive and -negative mice exhibited distinct microbiome compositions and Th17 cell frequencies in the intestine and complex microbiota including SFB induced up to 15-fold increase in Th17 cell-associated mediators, serum amyloid A (SAA), and immunoglobulin A (IgA) responses ex vivo. This phenotype could be transmitted by co-housing of mice. Our findings highlight that changes in the gut microbiome can be observed in primary intestinal tissue slices ex vivo. This makes the system very attractive for disease modeling and assessment of new therapies.

2.
Sci Rep ; 13(1): 18160, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37875523

ABSTRACT

Process development for transferring lab-scale research workflows to automated manufacturing procedures is critical for chimeric antigen receptor (CAR)-T cell therapies. Therefore, the key factor for cell viability, expansion, modification, and functionality is the optimal combination of medium and T cell activator as well as their regulatory compliance for later manufacturing under Good Manufacturing Practice (GMP). In this study, we compared two protocols for CAR-mRNA-modified T cell generation using our current lab-scale process, analyzed all mentioned parameters, and evaluated the protocols' potential for upscaling and process development of mRNA-based CAR-T cell therapies.


Subject(s)
Receptors, Chimeric Antigen , T-Lymphocytes , Receptors, Chimeric Antigen/genetics , Cytokines , Immunotherapy, Adoptive/methods , Receptors, Antigen, T-Cell/genetics
3.
Transplant Cell Ther ; 27(8): 658.e1-658.e10, 2021 08.
Article in English | MEDLINE | ID: mdl-33964513

ABSTRACT

Graft-versus-host disease (GVHD) is one of the major complications following hematopoietic stem cell transplantation, which remains the sole curative therapy for many malignant diseases of the hematopoietic system. The immunomodulatory potential of mesenchymal stromal cells (MSCs) to treat GVHD is currently being tested in various preclinical and clinical trials. Because the results of the preclinical and clinical trials on the use of MSCs to treat GVHD have not been consistent, we analyzed the potential beneficial effects of syngeneic versus allogenic treatment, culture expansion of MSCs, and various MSC cell doses and time points of MSC transplantation in a murine GVHD model. We established the murine GVHD model based on the transplantation of umbilical cord blood-derived hematopoietic stem cells (UC-HSCs) and used this model to assess the therapeutic potential of umbilical cord blood-derived MSCs (UC-MSCs). The use of HSC and MSC populations derived from the same donor allowed us to exclude third-party cells and test the UC-HSCs and UC-MSCs in a matched setting. Moreover, we were able to compare various doses, transplantation time points, and the influence of culture expansion of MSCs on the impact of treatment. This resulted in 16 different treatment groups. The most efficient setting for treatment of UC-HSC-induced GVHD reactions was based on the simultaneous administration of 1 × 106 culture-expanded, syngeneically matched UC-MSCs. This therapy effectively reduced the number of CD8+ T cells in the blood, protected the mice from weight loss, and prolonged their survival until the end of observation period. Taken together, our data show beneficial effects of (1) syngeneic over allogeneic UC-HSCs and UC-MSCs, (2) culture-expanded cells over freshly isolated primary cells, (3) simultaneous over sequential administration, and (4) high doses of UC-MSCs. The animal model of GVHD established here is now available for more detailed studies, including a comparative analysis of the efficacy of MSCs derived from alternative sources, such as adipose tissue and bone marrow.


Subject(s)
Graft vs Host Disease , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Animals , CD8-Positive T-Lymphocytes , DNA-Activated Protein Kinase , DNA-Binding Proteins , Humans , Interleukin Receptor Common gamma Subunit , Mice , Mice, Inbred NOD , Umbilical Cord
4.
Immun Inflamm Dis ; 8(3): 363-370, 2020 09.
Article in English | MEDLINE | ID: mdl-32525618

ABSTRACT

INTRODUCTION: Models of mice carrying a human immune system, so-called humanized mice, are used increasingly as preclinical models to bridge the gap between model organisms and human beings. Challenges of the humanized mouse model include finding suitable sources for human hematopoietic stem cells (HSC) and reaching sufficient engraftment of these cells in immunocompromised mice. METHODS: In this study, we compared the use of CD34+ HSC from cord blood (CB) vs HSC from adult mobilized peripheral blood. Furthermore, we developed a simple and highly specific test for donor identification in humanized mice by applying the detection method of short tandem repeats (STR). RESULTS: It was found that, in vitro, CB-derived and adult HSC show comparable purity, viability, and differentiation potential in colony-forming unit assays. However, in vivo, CB-derived HSC engrafted to a significantly higher extent in NOD.Cg-Prkdcscid IL2rγtm1Wjl /SzJ (NSG) mice than adult HSC. Increasing the cell dose of adult HSC or using fresh cells without cryopreservation did not improve the engraftment rate. Interestingly, when using adult HSC, the percentage of human cells in the bone marrow was significantly higher than that in the peripheral blood. Using the STR-based test, we were able to identify and distinguish human cells from different donors in humanized mice and in a humanized allogeneic transplantation model. CONCLUSION: From these findings, we conclude that adult mobilized HSC are less suitable for generating a humanized immune system in mice than CB-derived cells.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukocytes, Mononuclear , Animals , Female , Male , Mice , Mice, Inbred NOD , Microsatellite Repeats , Technology
5.
Front Immunol ; 10: 1035, 2019.
Article in English | MEDLINE | ID: mdl-31178857

ABSTRACT

T cell modulation in the clinical background of autoimmune diseases or allogeneic cell and organ transplantations with concurrent preservation of their natural immunological functions (e.g., pathogen defense) is the major obstacle in immunology. An anti-human CD4 antibody (MAX.16H5) was applied intravenously in clinical trials for the treatment of autoimmune diseases (e.g., rheumatoid arthritis) and acute late-onset rejection after transplantation of a renal allograft. The response rates were remarkable and no critical allergic problems or side effects were obtained. During the treatment of autoimmune diseases with the murine MAX.16H5 IgG1 antibody its effector mechanisms with effects on lymphocytes, cytokines, laboratory and clinical parameters, adverse effects as well as pharmacodynamics and kinetics were studied in detail. However, as the possibility of developing immune reactions against the murine IgG1 Fc-part remains, the murine antibody was chimerized, inheriting CD4-directed variable domains of the MAX.16H5 IgG1 connected to a human IgG4 backbone. Both antibodies were studied in vitro and in specific humanized mouse transplantation models in vivo with a new scope. By ex vivo incubation of an allogeneic immune cell transplant with MAX.16H5 a new therapy strategy has emerged for the first time enabling both the preservation of the graft-vs.-leukemia (GVL) effect and the permanent suppression of the acute graft-vs.-host disease (aGVHD) without conventional immunosuppression. In this review, we especially focus on experimental data and clinical trials obtained from the treatment of autoimmune diseases with the murine MAX.16H5 IgG1 antibody. Insights gained from these trials have paved the way to better understand the effects with the chimerized MAX.16H5 IgG4 as novel therapeutic approach in the context of GVHD prevention.


Subject(s)
CD4 Antigens/immunology , Epitopes/immunology , Immune Tolerance , Immunoglobulin G/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Graft vs Host Disease/prevention & control , Humans , Immunoglobulin G/therapeutic use , Interleukin-6/blood , Lymphocyte Cooperation , Mice
6.
Exp Anim ; 68(1): 1-11, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30078790

ABSTRACT

Cyclosporine A (CsA) is used in hematopoietic stem cell transplantations (HSCT) to prevent graft-versus-host disease (GvHD). GvHD is the most severe side effect of allogeneic HSCT and efficient therapies are lacking. Mouse models are an essential tool for assessing potential new therapeutic strategies. Our aim is to mimic a clinical setting as close as possible using CsA treatment after sublethal irradiation in NSG mice and thereby evaluate the feasibility of this mouse model for GvHD studies. The effect of CsA (7.5 mg/kg body weight) on sublethally X-ray irradiated (2 Gy) and non-irradiated NSG mice was tested. CsA was administered orally every twelve hours for nine days. Animals irradiated and treated with CsA showed a shorter survival (n=3/10) than irradiated animals treated with NaCl (n=10/10). Furthermore, combined therapy resulted in severe weight loss (82 ± 6% of initial weight, n=7, day 8), with weight recovery after the CsA application was ceased. A high number of apoptotic events in the liver was observed in these mice (0.431 ± 0.371 apoptotic cells/cm2, n=2, compared to 0.027 ± 0.034 apoptotic cells/cm2, n=5, in the non-irradiated group). Other adverse effects, including a decrease in white blood cell counts were non-CsA-specific manifestations of irradiation. The combination of CsA treatment with irradiation has a hepatotoxic and lethal effect on NSG mice, whereas the treatment without irradiation is tolerated. Therefore, when using in vivo models of GvHD in NSG mice, a combined treatment with CsA and X-ray irradiation should be avoided or carefully evaluated.


Subject(s)
Cyclosporine/adverse effects , Immunosuppressive Agents/adverse effects , Whole-Body Irradiation/adverse effects , X-Rays/adverse effects , Allografts , Animals , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation , Male , Mice, Inbred NOD , Models, Animal , Radiation Dosage
7.
Front Immunol ; 9: 2408, 2018.
Article in English | MEDLINE | ID: mdl-30405611

ABSTRACT

Despite the constant development of innovative therapeutic options for hematological malignancies, the gold-standard therapy regimen for curative treatment often includes allogeneic hematopoietic stem cell transplantation (HSCT). The graft-vs.-leukemia effect (GVL) is one of the main therapeutic goals that arises from HSCT. On the other hand, graft-vs.-host disease (GVHD) is still one of the main and most serious complications following allogeneic HSCT. In acute myeloid leukemia (AML), HSCT together with high-dose chemotherapy is used as a treatment option. An aggressive progression of the disease, a decreased response to treatment, and a poor prognosis are connected to internal tandem duplication (ITD) mutations in the Fms like tyrosine kinase 3 (FLT3) gene, which affects around 30% of AML patients. In this study, C3H/HeN mice received an allogeneic graft together with 32D-FLT3ITD AML cells to induce acute GVHD and GVL. It was examined if pre-incubation of the graft with the anti-human cluster of differentiation (CD) 4 antibody MAX.16H5 IgG1 prevented the development of GVHD and whether the graft function was impaired. Animals receiving grafts pre-incubated with the antibody together with FLT3ITD AML cells survived significantly longer than mice receiving untreated grafts. The observed prolonged survival due to MAX.16H5 incubation of immune cell grafts prior to transplantation may allow an extended application of additional targeted strategies in the treatment of AML.


Subject(s)
CD4 Antigens/antagonists & inhibitors , Hematopoietic Stem Cell Transplantation/adverse effects , Immunoglobulin G/immunology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , fms-Like Tyrosine Kinase 3/genetics , Animals , Apoptosis , CD4 Antigens/immunology , Disease Models, Animal , Flow Cytometry , Graft vs Host Disease/etiology , Graft vs Leukemia Effect/immunology , Humans , Immunoglobulin G/pharmacology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Knockout , Prognosis , Transplantation, Homologous , fms-Like Tyrosine Kinase 3/metabolism
8.
Oncotarget ; 8(61): 103626-103639, 2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29262589

ABSTRACT

Active BCR related (ABR) gene deactivates ras-related C3 botulinum toxin substrate 1 (RAC1), which plays an essential role in regulating normal hematopoiesis and in leukemia. BCR gene, closely related to ABR, acts as a tumor suppressor in chronic myeloid leukemia and has overlapping functions with ABR. Evidence for a putative tumor suppressor role of ABR has been shown in several solid tumors, in which deletion of ABR is present. Our results show downregulation of ABR in AML. A block of ABR prevents myeloid differentiation and leads to repression of the myeloid transcription factor C/EBPα, a major regulator of myeloid differentiation and functionally impaired in leukemia. Conversely, stable overexpression of ABR enhances myeloid differentiation. Inactivation of the known ABR target RAC1 by treatment with the RAC1 inhibitor NSC23766 resulted in an increased expression of C/EBPα in primary AML samples and in AML cell lines U937 and MV4;11. Finally, AML patients with high ABR expression at diagnosis showed a significant longer overall survival and patients who respond to azacitidine therapy showed a significant higher ABR expression. This is the first report showing that ABR expression plays a critical role in both myelopoiesis and AML. Our data indicate the tumor suppressor potential of ABR and underline its potential role in leukemia therapeutic strategies.

9.
Nat Commun ; 8(1): 46, 2017 06 29.
Article in English | MEDLINE | ID: mdl-28663557

ABSTRACT

Transcription factor C/EBPα is a master regulator of myelopoiesis and its inactivation is associated with acute myeloid leukemia. Deregulation of C/EBPα by microRNAs during granulopoiesis or acute myeloid leukemia development has not been studied. Here we show that oncogenic miR-182 is a strong regulator of C/EBPα. Moreover, we identify a regulatory loop between C/EBPα and miR-182. While C/EBPα blocks miR-182 expression by direct promoter binding during myeloid differentiation, enforced expression of miR-182 reduces C/EBPα protein level and impairs granulopoiesis in vitro and in vivo. In addition, miR-182 expression is highly elevated particularly in acute myeloid leukemia patients with C-terminal CEBPA mutations, thereby depicting a mechanism by which C/EBPα blocks miR-182 expression. Furthermore, we present miR-182 expression as a prognostic marker in cytogenetically high-risk acute myeloid leukemia patients. Our data demonstrate the importance of a controlled balance between C/EBPα and miR-182 for the maintenance of healthy granulopoiesis.C/EBPα is a critical transcription factor involved in myelopoiesis and its inactivation is associated with acute myeloid leukemia (AML). Here the authors show a negative feedback loop between C/EBPα and miR-182 and identify this miRNA as a marker of high-risk AML.


Subject(s)
CCAAT-Enhancer-Binding Proteins/genetics , Granulocytes , Leukemia, Myeloid, Acute/genetics , Leukopoiesis/genetics , MicroRNAs/genetics , Animals , Blotting, Western , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/genetics , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/mortality , Mice , Mice, Knockout , MicroRNAs/metabolism , Prognosis , Real-Time Polymerase Chain Reaction
10.
PLoS One ; 12(5): e0176517, 2017.
Article in English | MEDLINE | ID: mdl-28463994

ABSTRACT

INTRODUCTION: One of the main obstacles in the widespread application of gene therapeutic approaches is the necessity for efficient and safe transfection methods. For the introduction of small oligonucleotide gene therapeutics into a target cell, nanoparticle-based methods have been shown to be highly effective and safe. While immune cells are a most interesting target for gene therapy, transfection might influence basic immune functions such as cytokine expression and proliferation, and thus positively or negatively affect therapeutic intervention. Therefore, we investigated the effects of nanoparticle-mediated transfection such as polyethylenimine (PEI) or magnetic beads on immune cell proliferation. METHODS: Human adherent and non-adherent PBMCs were transfected by various methods (e.g. PEI, Lipofectamine® 2000, magnetofection) and stimulated. Proliferation was measured by lymphocyte transformation test (LTT). Cell cycle stages as well as expression of proliferation relevant genes were analyzed. Additionally, the impact of nanoparticles was investigated in vivo in a murine model of the severe systemic immune disease GvHD (graft versus host disease). RESULTS: The proliferation of primary immune cells was influenced by nanoparticle-mediated transfection. In particular in the case of magnetic beads, proliferation inhibition coincided with short-term cell cycle arrest and reduced expression of genes relevant for immune cell proliferation. Notably, proliferation inhibition translated into beneficial effects in a murine GvHD model with animals treated with PEI-nanoparticles showing increased survival (pPEI = 0.002) most likely due to reduced inflammation. CONCLUSION: This study shows for the first time that nanoparticles utilized for gene therapeutic transfection are able to alter proliferation of immune cells and that this effect depends on the type of nanoparticle. For magnetic beads, this was accompanied by temporary cell cycle arrest. Notably, in GvHD this nonspecific anti-proliferative effect might contribute to reduced inflammation and increased survival.


Subject(s)
Gene Transfer Techniques , Leukocytes, Mononuclear/physiology , Nanoparticles/therapeutic use , Transfection/methods , Animals , Cell Cycle , Humans , Leukocytes, Mononuclear/metabolism , Lymphocyte Activation , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
11.
Cytometry A ; 89(9): 803-15, 2016 09.
Article in English | MEDLINE | ID: mdl-27560708

ABSTRACT

NOD.Cg-Prkdc(scid) IL-2rg(tm1Wjl) /SzJ (NSG) mice are a valuable tool for studying Graft-versus-Host-Disease (GvHD) induced by human immune cells. We used a model of acute GvHD by transfer of human peripheral blood mononuclear cells (PBMCs) into NSG mice. The severity of GvHD was reflected by weight loss and was associated with engraftment of human cells and the expansion of leukocytes, particularly granulocytes and monocytes. Pre-treatment of PBMCs with the anti-human CD4 antibody MAX.16H5 IgG1 or IgG4 attenuated GvHD. The transplantation of 2 × 10(7) PBMCs without anti-human CD4 pre-treatment induced a severe GvHD (0% survival). In animals receiving 2 × 10(7) PBMCs pre-incubated with MAX.16H5 IgG1 or IgG4, GvHD development was reduced and survival was increased. Immune reconstitution was measured by flow cytometry and confirmed for human leukocytes (CD45), CD3(+) /CD8(+) cytotoxic T cells and CD3(+) /CD4(+) T helper cells. Human B cells (CD19) and monocytes (CD14) could not be detected. Histopathological analysis (TUNEL assay) of the gut of recipient animals showed significantly less apoptotic crypt cells in animals receiving a MAX.16H5 IgG1 pre-incubated graft. These findings indicate that pre-incubation of an allogeneic graft with an anti-human CD4 antibody may decrease the frequency and severity of GvHD after hematopoietic stem cell transplantation (HSCT) and the need of conventional immunosuppressive drugs. Moreover, this approach most probably provides a safer HSCT that must be confirmed in appropriate clinical trials in the future. © 2016 International Society for Advancement of Cytometry.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Graft vs Host Disease/immunology , Interleukin Receptor Common gamma Subunit/genetics , Leukocytes, Mononuclear/immunology , Animals , Antibodies/immunology , Antibodies/pharmacology , Disease Models, Animal , Graft vs Host Disease/genetics , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Interleukin Receptor Common gamma Subunit/immunology , Mice , Mice, Knockout
13.
Cytometry A ; 87(4): 334-45, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25717029

ABSTRACT

Acute Graft-versus-Host-Disease (aGvHD) is one of the major complications following allogeneic hematopoietic stem cell transplantation (HSCT). Although rather helpful, the use of conventional immunosuppressive drugs leads to general immunosuppression and is toxic. The effects of CD4(+) T-cells, in respect to the development of aGvHD, can be altered by administration of antihuman CD4 monoclonal antibodies, here MAX.16H5 IgG1 . This approach must be tested for possible interference with the Graft-versus-Leukemia-Effect (GvL). Thus, in vitro experiments were conducted, exposing P815 leukemic cells to bone marrow and splenocytes from cd4(-/-) -C57Bl/6 mice transgenic for human CD4 and HLA-DR3 (triple transgenic mice, [TTG]) as well as previously irradiated splenocytes from Balb/c(wt) mice. Using flow cytometry, the vitality of the various malignant and graft cells was analyzed over the course of 4 days. The survival rate of P815 cells did not change significantly when exposed to MAX.16H5 IgG1 , neither did the viability of the graft cells. This provides evidence that MAX.16H5 IgG1 does not impair the GvL effect in vitro. Additionally, P815-Balb/c(wt) leukemic mice were transplanted with P815(GFP) cells, bone marrow, and splenocytes from TTG mice with and without MAX.16H5 IgG1 . Without transplantation, P815(GFP) leukemic cells could be detected by flow cytometry in the liver, the bone marrow, and the spleen of recipients. The antibodies prevented aGvHD while leaving the GvL effect intact. These findings indicate no negative effect of MAX.16H5 IgG1 on the GvL effect in vitro and in vivo after HSCT in a murine model.


Subject(s)
CD4 Antigens/immunology , Graft vs Host Disease/immunology , Graft vs Leukemia Effect/immunology , Hematopoietic Stem Cell Transplantation , Leukemia/immunology , Animals , Antibodies/immunology , Antibodies, Monoclonal/immunology , Bone Marrow/pathology , Bone Marrow Transplantation , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Survival , Flow Cytometry , Graft vs Host Disease/prevention & control , Green Fluorescent Proteins , HLA-DR3 Antigen/genetics , Humans , Immune Tolerance/immunology , Immunosuppression Therapy/adverse effects , Immunosuppression Therapy/methods , Leukemia/pathology , Leukemia/therapy , Liver/cytology , Liver/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neoplasm Transplantation , Spleen/cytology , Spleen/pathology , Transplantation, Homologous
15.
PLoS One ; 9(12): e113743, 2014.
Article in English | MEDLINE | ID: mdl-25546418

ABSTRACT

Starting point for the present work was the assumption that the cell line MuMac-E8 represents a murine cell population with stem cell properties. Preliminary studies already pointed to the expression of stem-cell associated markers and a self-regenerative potential of the cells. The cell line MuMac-E8 should be examined for their differential stage within stem cell hierarchy. MuMac-E8 cells were derived from a chimeric mouse model of arthritis. It could be shown that MuMac-E8 cells express mRNA of some genes associated with pluripotent stem cells (Nanog, Nucleostemin), of genes for hematopoietic markers (EPCR, Sca-1, CD11b, CD45), for the mesenchymal marker CD105 and of genes for the neural markers Pax-6 and Ezrin. In methylcellulose and May-Grünwald-Giemsa staining, hematopoietic colonies were obtained but the hematopoietic system of lethally irradiated mice could not be rescued. Osteogenic differentiation was not detectable. Thus, it became evident that MuMac-E8 represents not a stem cell line. However, MuMac-E8 cells expressed several myeloid surface markers (i.e. CD11b, F4/80, CD14, CD64), showed phagocytosis and is capable of producing nitric oxide. Thus, this cell line seems to be arrested an advanced stage of myeloid differentiation. Adherence data measured by impedance-based real-time cell analysis together with cell morphology data suggested that MuMac-E8 represents a new macrophage precursor cell line exhibiting weak adherence. This cell line is suitable as an in-vitro model for testing of macrophage functions. Moreover, it might be also useful for differentiation or reprogramming studies.


Subject(s)
Cell Differentiation , Cell Line , Cell Lineage , Macrophages/cytology , Stem Cells/cytology , Animals , Hematopoiesis , Humans , Mice , Mice, Transgenic , Osteogenesis , Stem Cells/physiology
16.
Int J Radiat Biol ; 90(7): 538-46, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24605769

ABSTRACT

PURPOSE: The time- and dose-dependent reconstitution of hematopoiesis after radiation exposure is strongly related to the stem cell population and can be used to predict hematological parameters. These parameters allow further insight into the hematopoietic system and might lead to the development of novel stem cell transplantation models. MATERIALS AND METHODS: CD4-/- C57Bl/6 mice, transgenic for human CD4 and HLA-DR3, were irradiated in a single (3, 6, 8 and 12 Gy) and fractionated (6 × 1 Gy, 6 × 1.5 Gy, 6 × 2 Gy; twice daily) dose regimen. Blood was analyzed weekly for red blood cells (RBC), hemoglobin concentration (Hb), hematocrit (HCT) and white blood cells (WBC). Organ and tissue damage after irradiation were examined by histopathology. RESULTS: The recovery curves for RBC, Hb, HCT and WBC showed the same velocity (< 1 week) for all radiation doses (3-12 Gy) starting at different, dose-dependent times. The only dose-dependent parameter was defined by the beginning of the recovery process (dose-dependent shift) and higher doses were related to a later recovery of the hematopoietic system. The RBC, Hb and HCT recovery was followed by a saturation curve reaching a final concentration independent of the radiation dose. Histological analysis of the bone marrow in the single dose cohort showed a dose-dependent reduction of the cellularity in the bone marrow cavities. The fractioned radiation dose cohort resulted in a regeneration of all bone marrow cavities. CONCLUSION: Specific functions were developed to describe the reconstitution of hematological parameters after total body irradiation.


Subject(s)
Hematologic Tests , Models, Biological , Whole-Body Irradiation/adverse effects , Animals , Bone Marrow/radiation effects , Dose-Response Relationship, Radiation , Hemoglobins/metabolism , Humans , Mice , Regression Analysis
17.
Cell Mol Life Sci ; 71(11): 2135-48, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24067988

ABSTRACT

This is the first report showing that an epitope-specific ex vivo modulation of an allogeneic hematopoietic stem cell graft by the anti-human CD4 antibody MAX.16H5 IgG1 simultaneously facilitates the anti-tumor capacity of the graft (Graft-versus-leukemia effect, GvL) and the long-term suppression of the deleterious side effect Graft-versus-host-disease (GvHD). To distinguish and consolidate GvL from GvHD, the anti-human CD4 antibody MAX16.H5 IgG1 was tested in murine GvHD and tumor models. The survival rate was significantly increased in recipients receiving a MAX.16H5 IgG1 short-term (2 h) pre-incubated graft even when tumor cells were co-transplanted or when recipient mice were treated by MAX.16H5 IgG1 before transplantation. After engraftment, regulatory T-cells are generated only supporting the GvL effect. It was also possible to transfer the immune tolerance from GvHD-free recipient chimeras into third party recipient mice without the need of reapplication of MAX.16H5 IgG1 anti-human CD4 antibodies. These findings are also benefical for patients with leukemia when no matched related or unrelated donor is available and provides a safer allogeneic HSCT, which is more effective against leukemia. It also facilitates allogeneic (stem) cell transplantations for other indications (e.g., autoimmune-disorders).


Subject(s)
Antilymphocyte Serum/pharmacology , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/drug effects , Immunoglobulin G/pharmacology , Leukemia/therapy , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , Cells, Cultured , Disease Models, Animal , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Humans , Immune Tolerance , Immunomodulation , Leukemia/immunology , Leukemia/mortality , Leukemia/pathology , Mice , Mice, Transgenic , Survival Analysis , Transplantation Chimera/immunology , Transplantation, Homologous , Whole-Body Irradiation
18.
Methods Mol Biol ; 968: 93-104, 2013.
Article in English | MEDLINE | ID: mdl-23296888

ABSTRACT

The polymerase chain reaction is a powerful molecular tool for the detection and analysis of very small amounts of DNA. Today, hybridization probes are often used in real-time PCR for more sensitive and specific detection of pathogens and for determination of gene regulation or mutation analysis instead of intercalating dyes like SYBR Green. Here, we describe how to generate suitable primers and hybridization probes for the specific detection of fungal DNA. Furthermore, we show the advantages of hybridization probes using the LightCycler-PCR for the detection of different Candida spp. and Aspergillus spp. in patient blood samples. The methods used to develop such PCR assays will also be presented in the following protocol.


Subject(s)
Aspergillus/genetics , Aspergillus/isolation & purification , Candida/genetics , Candida/isolation & purification , Fluorescent Dyes/chemistry , Nucleic Acid Hybridization/methods , Oligonucleotide Probes/genetics , DNA Primers/genetics , Oligonucleotide Probes/chemistry , RNA, Fungal/genetics , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction , Species Specificity
19.
Cytometry A ; 81(6): 476-88, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22522779

ABSTRACT

Regulatory CD4(+) CD25(+) FoxP3(+) T cells (T(regs) ) suppress immunological reactions. However, the effect of adding T(regs) to hematopoietic stem cell grafts on recovery and graft versus host disease (GvHD) is unknown. T(regs) from splenocytes of C57Bl/6 and Balb/c wild-type mice were isolated by MACS separation and analyzed by flow cytometry. Using a murine syngeneic transplantation model that clearly distinguishes between donor and host hematopoiesis, we showed that co-transplantation of bone marrow cells (BMCs) with high levels of T(regs) leads to a 100% survival of the mice and accelerates the hematopoietic recovery significantly (full donor chimerism). In allogeneic transplantation, bone marrow and T(regs) co-transplantation were compared to allogeneic bone marrow transplantation with or without the addition of splenocytes. Survival, leukocyte recovery, chimerism at days -2, 19, 33, and 61 for murine CD4, human CD4, HLA-DR3, murine CD3, murine CD8, murine Balb/c-H2K(d) , murine C57Bl/6-H2K(b) , and GvHD appearance were analyzed. Allogeneic bone marrow transplantation requires the addition of splenocytes to reach engraftment. Mice receiving grafts with bone marrow, splenocytes and high levels of allogeneic T(regs) died within 28 days (hematopoietic failure). Here, we show also detailed flow cytometric data reagarding analysis of chimerism after transplantation in unique murine hematopoietic stem cell transplantation models. Our findings showed that the syngeneic co-transplantation of CD4(+) , CD25(+) , FoxP3(+) T-cells and BMCs induced a stimulating effect on reconstitution of hematopoiesis after irradiation. However, in the allogeneic setting the co-transplantation of T(regs) aggravates the engraftment of transplanted cells.


Subject(s)
Bone Marrow Transplantation/methods , Graft vs Host Disease/prevention & control , Hematopoietic Stem Cell Transplantation/methods , T-Lymphocytes, Regulatory/transplantation , Transplantation, Homologous/adverse effects , Transplantation, Isogeneic , Animals , Bone Marrow Transplantation/mortality , Chimerism , Flow Cytometry , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation/mortality , Humans , Mice , Mice, Inbred C57BL , Spleen/cytology , Spleen/immunology , Survival Rate , T-Lymphocytes, Regulatory/immunology , Treatment Failure , Whole-Body Irradiation
20.
Mycoses ; 55(5): 416-25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22151280

ABSTRACT

An early diagnosis of an invasive fungal infection is essential for the initiation of a specific antifungal therapy and to avoid unnecessary discontinuation of a baseline therapy for haematological or oncological diseases. A real-time PCR assay for the detection and strain identification of Aspergillus species from culture strains was evaluated. DNA preparation was evaluated in contaminated culture media, urine and serum. A LightCycler PCR to differentiate various Aspergillus species was established. A real-time PCR assay for the detection of Aspergillus species was improved and was able to detect and differentiate medically important Aspergillus spp. The sensitivity of the test was <10 plasmid equivalents/assay. The real-time PCR assay is a useful tool for the rapid identification of Aspergillus species and might be useful as an early diagnostic tool to detect an invasive fungal infection. A real-time PCR protocol was improved by generating plasmid standards, additional generation of melting curves for species identification and the correlation between the melting temperature and the nucleotide exchanges within the used 18S rRNA gene region.


Subject(s)
Aspergillus/classification , Aspergillus/isolation & purification , Mycology/methods , Real-Time Polymerase Chain Reaction/methods , Aspergillus/genetics , Humans , Plasma/microbiology , Plasmids , Sensitivity and Specificity , Urine/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...