Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Neurophysiol ; 131(7): 1567-1578, 2020 07.
Article in English | MEDLINE | ID: mdl-32417698

ABSTRACT

OBJECTIVE: In long-term electroencephalogram (EEG) signals, automated classification of epileptic seizures is desirable in diagnosing epilepsy patients, as it otherwise depends on visual inspection. To the best of the author's knowledge, existing studies have validated their algorithms using cross-validation on the same database and less number of attempts have been made to extend their work on other databases to test the generalization capability of the developed algorithms. In this study, we present the algorithm for cross-database evaluation for classification of epileptic seizures using five EEG databases collected from different centers. The cross-database framework helps when sufficient epileptic seizures EEG data are not available to build automated seizure detection model. METHODS: Two features, namely successive decomposition index and matrix determinant were extracted at a segmentation length of 4 s (50% overlap). Then, adaptive median feature baseline correction (AM-FBC) was applied to overcome the inter-patient and inter-database variation in the feature distribution. The classification was performed using a support vector machine classifier with leave-one-database-out cross-validation. Different classification scenarios were considered using AM-FBC, smoothing of the train and test data, and post-processing of the classifier output. RESULTS: Simulation results revealed the highest area under the curve-sensitivity-specificity-false detections (per hour) of 1-1-1-0.15, 0.89-0.99-0.82-2.5, 0.99-0.73-1-1, 0.95-0.97-0.85-1.7, 0.99-0.99-0.92-1.1 using the Ramaiah Medical College and Hospitals, Children's Hospital Boston-Massachusetts Institute of Technology, Temple University Hospital, Maastricht University Medical Centre, and University of Bonn databases respectively. CONCLUSIONS: We observe that the AM-FBC plays a significant role in improving seizure detection results by overcoming inter-database variation of feature distribution. SIGNIFICANCE: To the best of the author's knowledge, this is the first study reporting on the cross-database evaluation of classification of epileptic seizures and proven to be better generalization capability when evaluated using five databases and can contribute to accurate and robust detection of epileptic seizures in real-time.


Subject(s)
Electroencephalography/methods , Epilepsy/diagnosis , Data Interpretation, Statistical , Electroencephalography/standards , Epilepsy/classification , Epilepsy/physiopathology , Humans , Sensitivity and Specificity , Support Vector Machine
2.
Front Hum Neurosci ; 14: 555054, 2020.
Article in English | MEDLINE | ID: mdl-33408621

ABSTRACT

About one third of patients with epilepsy have seizures refractory to the medical treatment. Electrical stimulation mapping (ESM) is the gold standard for the identification of "eloquent" areas prior to resection of epileptogenic tissue. However, it is time-consuming and may cause undesired side effects. Broadband gamma activity (55-200 Hz) recorded with extraoperative electrocorticography (ECoG) during cognitive tasks may be an alternative to ESM but until now has not proven of definitive clinical value. Considering their role in cognition, the alpha (8-12 Hz) and beta (15-25 Hz) bands could further improve the identification of eloquent cortex. We compared gamma, alpha and beta activity, and their combinations for the identification of eloquent cortical areas defined by ESM. Ten patients with intractable focal epilepsy (age: 35.9 ± 9.1 years, range: 22-48, 8 females, 9 right handed) participated in a delayed-match-to-sample task, where syllable sounds were compared to visually presented letters. We used a generalized linear model (GLM) approach to find the optimal weighting of each band for predicting ESM-defined categories and estimated the diagnostic ability by calculating the area under the receiver operating characteristic (ROC) curve. Gamma activity increased more in eloquent than in non-eloquent areas, whereas alpha and beta power decreased more in eloquent areas. Diagnostic ability of each band was close to 0.7 for all bands but depended on multiple factors including the time period of the cognitive task, the location of the electrodes and the patient's degree of attention to the stimulus. We show that diagnostic ability can be increased by 3-5% by combining gamma and alpha and by 7.5-11% when gamma and beta were combined. We then show how ECoG power modulation from cognitive testing can be used to map the probability of eloquence in individual patients and how this probability map can be used in clinical settings to optimize ESM planning. We conclude that the combination of gamma and beta power modulation during cognitive testing can contribute to the identification of eloquent areas prior to ESM in patients with refractory focal epilepsy.

3.
Int J Neural Syst ; 29(4): 1850012, 2019 May.
Article in English | MEDLINE | ID: mdl-29768988

ABSTRACT

Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a promising treatment for patients with refractory epilepsy. However, therapy response varies and precise positioning of the DBS lead is potentially essential for maximizing therapeutic efficacy. We investigate if single-cell recordings acquired by microelectrode recordings can aid targeting of the ANT during surgery and hypothesize that the neuronal firing properties of the target region relate to clinical outcome. We prospectively included 10 refractory epilepsy patients and performed microelectrode recordings under general anesthesia to identify the change in neuronal signals when approaching and transecting the ANT. The neuronal firing properties of the target region, anatomical locations of microelectrode recordings and active contact positions of the DBS lead along the recorded trajectory were compared between responders and nonresponders to DBS. We obtained 19 sets of recordings from 10 patients (five responders and five nonresponders). Amongst the 403 neurons detected, 365 (90.6%) were classified as bursty. Entry into the ANT was characterized by an increase in firing rate while exit of the ANT was characterized by a decrease in firing rate. Comparing the trajectories of responders to nonresponders, we found differences neither in the neuronal firing properties themselves nor in their locations relative to the position of the active contact. Single-cell firing rate acquired by microelectrode recordings under general anesthesia can thus aid targeting of the ANT during surgery, but is not related to clinical outcome in DBS for patients with refractory epilepsy.


Subject(s)
Anterior Thalamic Nuclei/physiology , Deep Brain Stimulation/methods , Drug Resistant Epilepsy/therapy , Neurons/physiology , Adult , Aged , Anterior Thalamic Nuclei/cytology , Anterior Thalamic Nuclei/diagnostic imaging , Deep Brain Stimulation/instrumentation , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Female , Humans , Male , Microelectrodes , Middle Aged , Prospective Studies
4.
Neurocrit Care ; 29(2): 195-202, 2018 10.
Article in English | MEDLINE | ID: mdl-29589330

ABSTRACT

BACKGROUND: Currently, continuous electroencephalographic monitoring (cEEG) is the only available diagnostic tool for continuous monitoring of brain function in intensive care unit (ICU) patients. Yet, the exact relevance of routinely applied ICU cEEG remains unclear, and information on the implementation of cEEG, especially in Europe, is scarce. This study explores current practices of cEEG in adult Dutch ICU departments focusing on organizational and operational factors, development over time and factors perceived relevant for abstaining its use. METHODS: A national survey on cEEG in adults among the neurology and adult intensive care departments of all Dutch hospitals (n = 82) was performed. RESULTS: The overall institutional response rate was 78%. ICU cEEG is increasingly used in the Netherlands (in 37% of all hospitals in 2016 versus in 21% in 2008). Currently in 88% of university, 55% of teaching and 14% of general hospitals use ICU cEEG. Reasons for not performing cEEG are diverse, including perceived non-feasibility and lack of data on the effect of cEEG use on patient outcome. Mostly, ICU cEEG is used for non-convulsive seizures or status epilepticus and prognostication. However, cEEG is never or rarely used for monitoring cerebral ischemia and raised intracranial pressure in traumatic brain injury. Review and reporting practices differ considerably between hospitals. Nearly all hospitals perform non-continuous review of cEEG traces. Methods for moving toward continuous review of cEEG traces are available but infrequently used in practice. CONCLUSIONS: cEEG is increasingly used in Dutch ICUs. However, cEEG practices vastly differ between hospitals. Future research should focus on uniform cEEG practices including unambiguous EEG interpretation to facilitate collaborative research on cEEG, aiming to provide improved standard patient care and robust data on the impact of cEEG use on patient outcome.


Subject(s)
Critical Care/statistics & numerical data , Electroencephalography/statistics & numerical data , Intensive Care Units/statistics & numerical data , Neurologists/statistics & numerical data , Neurophysiological Monitoring/statistics & numerical data , Procedures and Techniques Utilization/statistics & numerical data , Seizures/diagnosis , Health Care Surveys/statistics & numerical data , Humans , Netherlands
5.
Curr Opin Anaesthesiol ; 30(2): 192-199, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28151826

ABSTRACT

PURPOSE OF REVIEW: In ICUs, numerous physiological parameters are continuously monitored and displayed. Yet, functional monitoring of the organ of primary concern, the brain, is not routinely performed. Despite the benefits of ICU use of continuous electroencephalographic (EEG)-monitoring (cEEG) is increasingly recognized, several issues nevertheless seem to hamper its widespread clinical implementation. RECENT FINDINGS: Utilization of ICU cEEG has significantly improved detection and characterization of cerebral pathology, prognostication and clinical management in specific patient groups. Potential solutions to several remaining challenges are currently being established. Descriptive EEG-terminology is evolving, whereas logistical issues are dealt with using telemedicine and quantitative EEG trends, training of nonexpert personnel and development of specialized detection algorithms. These concerted solutions are advancing cEEG-registration towards cEEG-monitoring. Notwithstanding these advances, obstacles such as ambiguous EEG-interpretation and differences in treatment based on EEG-findings need yet to be overcome. SUMMARY: In selected critically ill patient groups, ICU cEEG has clear benefits over (repeated) standard EEG or no functional brain monitoring at all and if available, cEEG should be used. However, several issues preventing optimal ICU cEEG usage persist and should be further explored.


Subject(s)
Brain Ischemia/diagnosis , Electroencephalography/statistics & numerical data , Intensive Care Units , Monitoring, Physiologic/methods , Seizures/diagnosis , Critical Care , Critical Illness , Electroencephalography/trends , Humans , Terminology as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...