Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 43(5): 114205, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753485

ABSTRACT

The advent of PARP inhibitors (PARPis) has profoundly changed the treatment landscape of BRCA1/BRCA2-mutated cancers. Despite this, the development of resistance to these compounds has become a major challenge. Hence, a detailed understanding of the mechanisms underlying PARPi sensitivity is crucially needed. Here, we show that loss of the POLE3-POLE4 subunits of DNA polymerase epsilon (Polε) strongly sensitizes cancer cells to PARPis in a Polε level-independent manner. Loss of POLE3-POLE4 is not associated with defective RAD51 foci formation, excluding a major defect in homologous recombination. On the contrary, treatment with PARPis triggers replicative gap accumulation in POLE3-POLE4 knockout (KO) cells in a PRIMPOL-dependent manner. In addition to this, the loss of POLE3-POLE4 further sensitizes BRCA1-silenced cells to PARPis. Importantly, the knockdown of 53BP1 does not rescue PARPi sensitivity in POLE3-POLE4 KO cells, bypassing a common PARPi resistance mechanism and outlining a potential strategy to sensitize cancer cells to PARPis.


Subject(s)
Poly(ADP-ribose) Polymerase Inhibitors , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Humans , DNA Replication/drug effects , Cell Line, Tumor , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , DNA Polymerase II/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Rad51 Recombinase/metabolism
2.
Cell Rep ; 39(9): 110871, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649380

ABSTRACT

The maintenance of genome stability relies on coordinated control of origin activation and replication fork progression. How the interplay between these processes influences human genetic disease and cancer remains incompletely characterized. Here we show that mouse cells featuring Polε instability exhibit impaired genome-wide activation of DNA replication origins, in an origin-location-independent manner. Strikingly, Trp53 ablation in primary Polε hypomorphic cells increased Polε levels and origin activation and reduced DNA damage in a transcription-dependent manner. Transcriptome analysis of primary Trp53 knockout cells revealed that the TRP53-CDKN1A/P21 axis maintains appropriate levels of replication factors and CDK activity during unchallenged S phase. Loss of this control mechanism deregulates origin activation and perturbs genome-wide replication fork progression. Thus, while our data support an impaired origin activation model for genetic diseases affecting CMG formation, we propose that loss of the TRP53-CDKN1A/P21 tumor suppressor axis induces inappropriate origin activation and deregulates genome-wide fork progression.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21 , DNA Polymerase II , DNA Replication , Poly-ADP-Ribose Binding Proteins , Replication Origin , Tumor Suppressor Protein p53 , Animals , Cell Cycle Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage/genetics , DNA Polymerase II/genetics , DNA Replication/genetics , Mice , Poly-ADP-Ribose Binding Proteins/genetics , S Phase , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...