Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
EMBO J ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816652

ABSTRACT

In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αß-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.

2.
Respir Res ; 24(1): 23, 2023 Jan 21.
Article in English | MEDLINE | ID: mdl-36681813

ABSTRACT

BACKGROUND: Low-dose spiral computed tomography (LDCT) may not lead to a clear treatment path when small to intermediate-sized lung nodules are identified. We have combined flow cytometry and machine learning to develop a sputum-based test (CyPath Lung) that can assist physicians in decision-making in such cases. METHODS: Single cell suspensions prepared from induced sputum samples collected over three consecutive days were labeled with a viability dye to exclude dead cells, antibodies to distinguish cell types, and a porphyrin to label cancer-associated cells. The labeled cell suspension was run on a flow cytometer and the data collected. An analysis pipeline combining automated flow cytometry data processing with machine learning was developed to distinguish cancer from non-cancer samples from 150 patients at high risk of whom 28 had lung cancer. Flow data and patient features were evaluated to identify predictors of lung cancer. Random training and test sets were chosen to evaluate predictive variables iteratively until a robust model was identified. The final model was tested on a second, independent group of 32 samples, including six samples from patients diagnosed with lung cancer. RESULTS: Automated analysis combined with machine learning resulted in a predictive model that achieved an area under the ROC curve (AUC) of 0.89 (95% CI 0.83-0.89). The sensitivity and specificity were 82% and 88%, respectively, and the negative and positive predictive values 96% and 61%, respectively. Importantly, the test was 92% sensitive and 87% specific in cases when nodules were < 20 mm (AUC of 0.94; 95% CI 0.89-0.99). Testing of the model on an independent second set of samples showed an AUC of 0.85 (95% CI 0.71-0.98) with an 83% sensitivity, 77% specificity, 95% negative predictive value and 45% positive predictive value. The model is robust to differences in sample processing and disease state. CONCLUSION: CyPath Lung correctly classifies samples as cancer or non-cancer with high accuracy, including from participants at different disease stages and with nodules < 20 mm in diameter. This test is intended for use after lung cancer screening to improve early-stage lung cancer diagnosis. Trial registration ClinicalTrials.gov ID: NCT03457415; March 7, 2018.


Subject(s)
Lung Neoplasms , Humans , Early Detection of Cancer/methods , Flow Cytometry , Lung , Lung Neoplasms/diagnostic imaging , Machine Learning , Sputum
3.
PLoS One ; 17(8): e0272069, 2022.
Article in English | MEDLINE | ID: mdl-35976857

ABSTRACT

Low dose computed tomography (LDCT) is the standard of care for lung cancer screening in the United States (US). LDCT has a sensitivity of 93.8% but its specificity of 73.4% leads to potentially harmful follow-up procedures in patients without lung cancer. Thus, there is a need for additional assays with high accuracy that can be used as an adjunct to LDCT to diagnose lung cancer. Sputum is a biological fluid that can be obtained non-invasively and can be dissociated to release its cellular contents, providing a snapshot of the lung environment. We obtained sputum from current and former smokers with a 30+ pack-year smoking history and who were either confirmed to have lung cancer or at high risk of developing the disease. Dissociated sputum cells were counted, viability determined, and labeled with a panel of markers to separate leukocytes from non-leukocytes. After excluding debris and dead cells, including squamous epithelial cells, we identified reproducible population signatures and confirmed the samples' lung origin. In addition to leukocyte and epithelial-specific fluorescent antibodies, we used the highly fluorescent meso-tetra(4-carboxyphenyl) porphyrin (TCPP), known to preferentially stain cancer (associated) cells. We looked for differences in cell characteristics, population size and fluorescence intensity that could be useful in distinguishing cancer samples from high-risk samples. We present our data demonstrating the feasibility of a flow cytometry platform to analyze sputum in a high-throughput and standardized matter for the diagnosis of lung cancer.


Subject(s)
Lung Neoplasms , Sputum , Early Detection of Cancer/methods , Flow Cytometry , Humans , Lung/diagnostic imaging , Lung/pathology , Lung Neoplasms/diagnosis , Lung Neoplasms/pathology , United States
4.
Cytokine ; 146: 155650, 2021 10.
Article in English | MEDLINE | ID: mdl-34343865

ABSTRACT

IL-6 family cytokines display broad effects in haematopoietic and non-haematopoietic cells that regulate immune homeostasis, host defence, haematopoiesis, development, reproduction and wound healing. Dysregulation of these activities places this cytokine family as important mediators of autoimmunity, chronic inflammation and cancer. In this regard, ectopic lymphoid structures (ELS) are a pathological hallmark of many tissues affected by chronic disease. These inducible lymphoid aggregates form compartmentalised T cell and B cell zones, germinal centres, follicular dendritic cell networks and high endothelial venules, which are defining qualities of peripheral lymphoid organs. Accordingly, ELS can support local antigen-specific responses to self-antigens, alloantigens, pathogens and tumours. ELS often correlate with severe disease progression in autoimmune conditions, while tumour-associated ELS are associated with enhanced anti-tumour immunity and a favourable prognosis in cancer. Here, we discuss emerging roles for IL-6 family cytokines as regulators of ELS development, maintenance and activity and consider how modulation of these activities has the potential to aid the successful treatment of autoimmune conditions and cancers where ELS feature.


Subject(s)
Interleukin-6/metabolism , Lymphoid Tissue/metabolism , Autoimmunity , Humans , Inflammation/pathology , Receptors, Interleukin-6/metabolism , Stromal Cells/metabolism
5.
Nat Commun ; 12(1): 1209, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33619282

ABSTRACT

Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1ß after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.


Subject(s)
Fructose/pharmacology , Glutamine/metabolism , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/toxicity , Acids/metabolism , Animals , Citric Acid Cycle/drug effects , Cytokines/metabolism , Disease Models, Animal , Glucose/pharmacology , Glycolysis/drug effects , Isotope Labeling , Macrophages/drug effects , Macrophages/metabolism , Metabolic Flux Analysis , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/pathology , Monocytes/drug effects , Monocytes/metabolism , Oxidation-Reduction , Oxidative Phosphorylation/drug effects , Oxygen Consumption/drug effects , Phenotype , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
6.
Arthritis Rheumatol ; 72(9): 1559-1570, 2020 09.
Article in English | MEDLINE | ID: mdl-32307922

ABSTRACT

OBJECTIVE: Ectopic lymphoid structures (ELS) develop at sites of infection, autoimmunity, and cancer. In patients with Sjögren's syndrome (SS), ELS support autoreactive B cell activation and lymphomagenesis. Interleukin-27 (IL-27) is a key regulator of adaptive immunity and limits Th17 cell-driven pathology. We undertook this study to elucidate the role of IL-27 in ELS formation and function in autoimmunity using a murine model of sialadenitis and in patients with SS. METHODS: ELS formation was induced in wild-type and Il27ra-/- mice via salivary gland (SG) cannulation of a replication-deficient adenovirus in the presence or absence of IL-17A neutralization. In SG biopsy samples, IL-27-producing cells were identified by multicolor immunofluorescence microscopy. Lesional and circulating IL-27 levels were determined by gene expression and enzyme-linked immunosorbent assay. The in vitro effect of IL-27 on T cells was assessed using fluorescence-activated cell sorting and cytokine release. RESULTS: In experimental sialadenitis, Il27ra-/- mice had larger and more hyperactive ELS (focus score; P < 0.001), increased autoimmunity, and an expanded Th17 response (P < 0.001), compared to wild-type mice. IL-17 blockade in Il27ra-/- mice suppressed the aberrant ELS response (B and T cell reduction against control; P < 0.01). SS patients displayed increased circulating IL-27 levels (P < 0.01), and in SG biopsy samples, IL-27 was expressed by DC-LAMP+ dendritic cells in association with CD3+ T cells. Remarkably, in SS T cells (but not in T cells from patients with rheumatoid arthritis or healthy controls), IL-27-mediated suppression of IL-17 secretion was severely impaired and associated with an aberrant interferon-γ release upon IL-27 stimulation. CONCLUSION: Our data indicate that the physiologic ability of IL-27 to limit the magnitude and function of ELS through control of Th17 cell expansion is severely impaired in SS patients, highlighting a defective immunoregulatory checkpoint in this condition.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Interleukin-17/immunology , Interleukin-27/immunology , Salivary Glands/immunology , Sjogren's Syndrome/immunology , Tertiary Lymphoid Structures/immunology , Th17 Cells/immunology , Adenoviridae Infections/immunology , Adult , Aged , Aged, 80 and over , Animals , Disease Models, Animal , Female , Gene Expression Profiling , Humans , Interleukin-17/antagonists & inhibitors , Interleukin-27/genetics , Interleukin-27/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Knockout , Middle Aged , RNA, Messenger/metabolism , Receptors, Interleukin/genetics , Salivary Glands/metabolism , Salivary Glands/pathology , Sialadenitis/immunology , Sialadenitis/pathology , Sjogren's Syndrome/pathology , Tertiary Lymphoid Structures/pathology
7.
Nat Immunol ; 20(4): 458-470, 2019 04.
Article in English | MEDLINE | ID: mdl-30890796

ABSTRACT

The cytokine IL-6 controls the survival, proliferation and effector characteristics of lymphocytes through activation of the transcription factors STAT1 and STAT3. While STAT3 activity is an ever-present feature of IL-6 signaling in CD4+ T cells, prior activation via the T cell antigen receptor limits IL-6's control of STAT1 in effector and memory populations. Here we found that phosphorylation of STAT1 in response to IL-6 was regulated by the tyrosine phosphatases PTPN2 and PTPN22 expressed in response to the activation of naïve CD4+ T cells. Transcriptomics and chromatin immunoprecipitation-sequencing (ChIP-seq) of IL-6 responses in naïve and effector memory CD4+ T cells showed how the suppression of STAT1 activation shaped the functional identity and effector characteristics of memory CD4+ T cells. Thus, tyrosine phosphatases induced by the activation of naïve T cells determine the way activated or memory CD4+ T cells sense and interpret cytokine signals.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , STAT1 Transcription Factor/metabolism , Signal Transduction , Animals , Arthritis, Rheumatoid/enzymology , Arthritis, Rheumatoid/pathology , CD4-Positive T-Lymphocytes/enzymology , CHO Cells , Cells, Cultured , Cricetulus , Gene Expression Regulation , Humans , Immunologic Memory , Interleukin-6/physiology , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Promoter Regions, Genetic , Protein Tyrosine Phosphatase, Non-Receptor Type 2/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Interleukin-6/physiology , Synovial Membrane/immunology , Transcription, Genetic
8.
Int J Cancer ; 143(1): 167-178, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29417587

ABSTRACT

Tertiary lymphoid structures (TLSs) display phenotypic and functional characteristics of secondary lymphoid organs, and often develop in tissues affected by chronic inflammation, as well as in certain inflammation-associated cancers where they are prognostic of improved patient survival. However, the mechanisms that govern the development of tumour-associated TLSs remain ill-defined. Here, we observed tumour-associated TLSs in a preclinical mouse model (gp130F/F ) of gastric cancer, where tumourigenesis is dependent on hyperactive STAT3 signalling through the common IL-6 family signalling receptor, gp130. Gastric tumourigenesis was associated with the development of B and T cell-rich submucosal lymphoid aggregates, containing CD21+ cellular networks and high endothelial venules. Temporally, TLS formation coincided with the development of gastric adenomas and induction of homeostatic chemokines including Cxcl13, Ccl19 and Ccl21. Reflecting the requirement of gp130-driven STAT3 signalling for gastric tumourigenesis, submucosal TLS development was also STAT3-dependent, but independent of the cytokine IL-17 which has been linked with lymphoid neogenesis in chronic inflammation and autoimmunity. Interestingly, upregulated lymphoid chemokine expression and TLS formation were also observed in a chronic gastritis model induced by Helicobacter felis infection. Tumour-associated TLSs were also observed in patients with intestinal-type gastric cancer, and a gene signature linked with TLS development in gp130F/F mice was associated with advanced clinical disease, but was not prognostic of patient survival. Collectively, our in vivo data reveal that hyperactive gp130-STAT3 signalling closely links gastric tumourigenesis with lymphoid neogenesis, and while a TLS gene signature was associated with advanced gastric cancer in patients, it did not indicate a favourable prognosis.


Subject(s)
Cytokine Receptor gp130/metabolism , STAT3 Transcription Factor/metabolism , Stomach Neoplasms/metabolism , Tertiary Lymphoid Structures/metabolism , Animals , Chemokines/genetics , Cytokine Receptor gp130/genetics , Disease Models, Animal , Helicobacter Infections/genetics , Helicobacter Infections/immunology , Helicobacter Infections/metabolism , Humans , Mice , Prognosis , STAT3 Transcription Factor/genetics , Signal Transduction , Stomach Neoplasms/genetics , Stomach Neoplasms/immunology , Survival Analysis , Tertiary Lymphoid Structures/genetics , Tertiary Lymphoid Structures/immunology
9.
Methods Mol Biol ; 1725: 101-118, 2018.
Article in English | MEDLINE | ID: mdl-29322412

ABSTRACT

In vivo mouse models of inflammatory arthritis are extensively used to investigate pathogenic mechanisms governing inflammation-driven joint damage. Two commonly utilized models include collagen-induced arthritis (CIA) and methylated bovine serum albumin (mBSA) antigen-induced arthritis (AIA). These offer unique advantages for modeling different aspects of human disease. CIA involves breach of immunological tolerance resulting in systemic autoantibody-driven arthritis, while AIA results in local resolving inflammatory flares and articular T cell-mediated damage. Despite limitations that apply to all animal models of human disease, CIA and AIA have been instrumental in identifying pathogenic mediators, immune cell subsets and stromal cell responses that determine disease onset, progression, and severity. Moreover, these models have enabled investigation of disease phases not easily studied in patients and have served as testing beds for novel biological therapies, including cytokine blockers and small molecule inhibitors of intracellular signaling that have revolutionized rheumatoid arthritis treatment.


Subject(s)
Antigens/adverse effects , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/pathology , Disease Models, Animal , Inflammation/pathology , Serum Albumin, Bovine/immunology , Animals , Arthritis, Experimental/etiology , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/etiology , Arthritis, Rheumatoid/metabolism , Cytokines/metabolism , Humans , Inflammation/etiology , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Serum Albumin, Bovine/administration & dosage
10.
Front Immunol ; 7: 401, 2016.
Article in English | MEDLINE | ID: mdl-27752256

ABSTRACT

Tertiary lymphoid organs (TLOs) are frequently observed in tissues affected by non-resolving inflammation as a result of infection, autoimmunity, cancer, and allograft rejection. These highly ordered structures resemble the cellular composition of lymphoid follicles typically associated with the spleen and lymph node compartments. Although TLOs within tissues show varying degrees of organization, they frequently display evidence of segregated T and B cell zones, follicular dendritic cell networks, a supporting stromal reticulum, and high endothelial venules. In this respect, they mimic the activities of germinal centers and contribute to the local control of adaptive immune responses. Studies in various disease settings have described how these structures contribute to either beneficial or deleterious outcomes. While the development and architectural organization of TLOs within inflamed tissues requires homeostatic chemokines, lymphoid and inflammatory cytokines, and adhesion molecules, our understanding of the cells responsible for triggering these events is still evolving. Over the past 10-15 years, novel immune cell subsets have been discovered that have more recently been implicated in the control of TLO development and function. In this review, we will discuss the contribution of these cell types and consider the potential to develop new therapeutic strategies that target TLOs.

SELECTION OF CITATIONS
SEARCH DETAIL
...