Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Med Phys ; 49(1): 624-631, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34792193

ABSTRACT

PURPOSE: To fabricate a 1D stemless plastic scintillation detector (SPSD) array using organic photodiodes and to use the detector to measure small field profiles and output factors. METHODS: An organic photodiode array was fabricated by spin coating a mixture of P3HT and PCBM organic semiconductors onto an ITO-coated glass substrate and depositing aluminum top contacts. Four bulk scintillators of various dimensions were placed on top of the photodiode array. A fifth scintillator was used that had been segmented by laser etching and the septa filled with black paint. Each detector array was first calibrated using a reference field of 95 cm SSD, 5 cm depth, and 10 × 10 cm2 field size for a 6 MV photon beam. After calibration, profiles were measured for three small field sizes: 0.5 × 0.5 cm2 , 1 × 1 cm2 , and 2 × 2 cm2 . Using the central pixel of the array, output factors were measured for field sizes of 0.5 × 0.5 cm2 to 25 × 25 cm2 . Small field profiles were compared to film measurements and output factors compared to ion chamber measurements. RESULTS: The segmented scintillator measured profiles that were in good agreement with film for all three field sizes. Output factors agreed to within 1.2% of ion chamber over the field size range of 1 × 1 cm2 to 25 × 25 cm2 . At 0.5 × 0.5 cm2 the segmented scintillator underestimated the output factor compared to film and a microDiamond detector. Bulk scintillators failed to produce a good agreement with film for measured profiles and deviations from ion chamber for output factors were apparent at field sizes below 5 × 5 cm2 . In comparison to a bulk scintillator of dimensions 5 × 5 × 0.5 cm3 the etched scintillator saw a reduction of 5.1, 7.1, and 10.5 times the signal for field sizes of 0.5 × 0.5 cm2 , 1 × 1 cm2 , and 2 × 2 cm2 , respectively. The reduction of signal comes from reduced cross-talk that was present in all of the bulk scintillator geometries to various degrees. CONCLUSION: A 1D SPSD array was demonstrated with various scintillator designs. The etched scintillator array demonstrated excellent small field profile measurements when compared to film and output factors (down to 1 × 1 cm2 field size) when compared to micro ion chamber and diamond detector measurements.


Subject(s)
Photons , Plastics , Calibration , Diamond , Radiometry
2.
Med Phys ; 47(11): 5882-5889, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32966652

ABSTRACT

PURPOSE: To fabricate a stemless plastic scintillation detector (SPSD) and characterize its linearity and reproducibility, and its dependence on energy and dose per pulse; and to apply it to clinical PDD and output factor measurements. METHODS: An organic bulk heterojunction photodiode was fabricated by spin coating a blend of P3HT and PCBM onto an ITO-coated glass substrate and depositing aluminum top contacts. Eljen scintillators (~5 × 5 × 5 mm3 ; EJ-204, EJ-208, and EJ-260) or Saint-Gobain scintillators (~3 × 3 × 2 mm3 ; BC-400 and BC-412) were placed on the opposite side of the glass using a silicone grease (optical coupling agent) creating the SPSD. Energy dependence was measured by using 100, 180, and 300 kVp photon beams from an orthovoltage treatment unit (Xstrahl 300) and 6 and 10 MV photons from a Varian TrueBeam linear accelerator. Linearity, dose per pulse dependence, output factors, and PDDs were measured using a 6 MV photon beam. PDDs and output factors were compared to ion chamber measurements. A control device was fabricated by substituting polystyrene (PS) for the P3HT/PCBM layer. No photocurrent should be generated in the control device and so any current measured is due to Compton current in the electrodes, wires, and surroundings from the irradiation. Output factors were corrected by subtracting the signal measured using the control device from the photodiode measured signal to yield the photocurrent. RESULTS: Each SPSD had excellent linearity with dose having an r2 of 1 and sensitivities of 1.07 nC/cGy, 1.04 nC/cGy, 1.00 nC/cGy and 0.10 nC/cGy, and 0.10 nC/cGy for EJ-204, EJ-208, EJ-260 (5 × 5 × 5 mm3 volumes), BC-400, and BC-412 (3 × 3 × 2 mm3 volumes), respectively. No significant dose per pulse dependence was measured. Output factors matched within 1% for the large scintillators for field sizes of 5 × 5 cm2 to 25 × 25 cm2 , but there was a large under-response at field sizes below 3 × 3 cm2 . After correcting the signal of the small scintillators by subtracting the current measured using the PS control, the output factors agreed with the ion chamber measurements within 1% from field sizes 1 × 1 cm2 to 20 × 20 cm2 . The impact of Cerenkov emissions in the scintillator was effectively corrected with a simple reflective coating on the scintillator. In comparison to a 6 MV photon beam, the large scintillator SPSDs exhibited 37%, 52%, and 73% of the response at energies 100 kVp, 180 kVp and 300 kVp, respectively. CONCLUSION: The principle of the SPSD was demonstrated. Devices had excellent linearity, reproducibility, and no significant dose per pulse dependence, and a simple reflective coating was sufficient to correct for Cerenkov emissions from within the scintillator. The devices demonstrated similar energy dependence to other scintillator detectors used in a radiotherapy setting.


Subject(s)
Plastics , Scintillation Counting , Monte Carlo Method , Photons , Radiometry , Reproducibility of Results
3.
MethodsX ; 7: 101125, 2020.
Article in English | MEDLINE | ID: mdl-33665146

ABSTRACT

Thin film radiation-detecting diodes fabricated in the laboratory, such as an organic bulk heterojunction, often contain conductive leads, indium tin oxide traces and metallic interconnects which are exposed to the high-energy photon beam during operation. These components generate extraneous radiation-induced currents, that, if not accounted for, will erroneously be attributed to the detector. In commercial devices, these contributions are mitigated by minimizing the size of these components, an approach that is often not feasible in a research lab. Here we demonstrate a method to measure these extraneous signals, and by subtraction, correct the gross signal to accurately reflect the signal generated in the active volume of the diode itself. The method can effectively correct the extraneous signal. The method showed promise over a range of photon beam energies, dose rates, and field sizes.

4.
J Chem Phys ; 151(14): 144702, 2019 Oct 14.
Article in English | MEDLINE | ID: mdl-31615224

ABSTRACT

Carrier scattering processes are studied in CH3NH3PbI3 using temperature-dependent four-wave mixing experiments. Our results indicate that scattering by ionized impurities limits the interband dephasing time (T2) below 30 K, with strong electron-phonon scattering dominating at higher temperatures (with a time scale of 125 fs at 100 K). Our theoretical simulations provide quantitative agreement with the measured carrier scattering rate and show that the rate of acoustic phonon scattering is enhanced by strong spin-orbit coupling, which modifies the band-edge density of states. The Rashba coefficient extracted from fitting the experimental results (γc = 2 eV Å) is in agreement with calculations of the surface Rashba effect and recent experiments using the photogalvanic effect on thin films.

5.
Sci Rep ; 6: 39139, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27974815

ABSTRACT

Solar cells incorporating organic-inorganic perovskite, which may be fabricated using low-cost solution-based processing, have witnessed a dramatic rise in efficiencies yet their fundamental photophysical properties are not well understood. The exciton binding energy, central to the charge collection process, has been the subject of considerable controversy due to subtleties in extracting it from conventional linear spectroscopy techniques due to strong broadening tied to disorder. Here we report the simultaneous observation of free and defect-bound excitons in CH3NH3PbI3 films using four-wave mixing (FWM) spectroscopy. Due to the high sensitivity of FWM to excitons, tied to their longer coherence decay times than unbound electron- hole pairs, we show that the exciton resonance energies can be directly observed from the nonlinear optical spectra. Our results indicate low-temperature binding energies of 13 meV (29 meV) for the free (defect-bound) exciton, with the 16 meV localization energy for excitons attributed to binding to point defects. Our findings shed light on the wide range of binding energies (2-55 meV) reported in recent years.

6.
Phys Chem Chem Phys ; 18(18): 12476-85, 2016 05 14.
Article in English | MEDLINE | ID: mdl-27087259

ABSTRACT

Bulk-heterojunction (BHJ) molecular blends prepared from small molecules based on diketopyrrolopyrrole (DPP) and perylene-diimide (PDI) chromophores have been studied using optical absorption, cyclic voltammetry, photoluminescence quenching, X-ray diffraction, atomic force microscopy, and current-voltage measurements. The results provided useful insights into the use of DPP and PDI based molecules as donor-acceptor composites for organic photovoltaic (OPV) applications. Beside optoelectronic compatibility, the choice of active layer processing conditions is of key importance to improve the performance of BHJ solar cells. In this context, post-production treatments, viz. thermal and solvent vapour annealing, and the use of 1,8-diiodooctane as a solvent additive were employed to optimize the morphology of blend films. X-ray diffraction and atomic force microscopy indicated that the aforementioned processing strategies led to non-optimal composite morphologies with significantly large crystallites in comparison to exciton diffusion lengths. Although the open circuit voltage of the OPV devices was satisfactory (0.78 V), it was anticipated that the bulky domains hamper charge dissociation and transport, which resulted in low photovoltaic performance.

7.
Adv Mater ; 27(45): 7445-50, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26460732

ABSTRACT

A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector.

8.
Nat Commun ; 6: 7081, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25953105

ABSTRACT

Solution-processed planar perovskite devices are highly desirable in a wide variety of optoelectronic applications; however, they are prone to hysteresis and current instabilities. Here we report the first perovskite-PCBM hybrid solid with significantly reduced hysteresis and recombination loss achieved in a single step. This new material displays an efficient electrically coupled microstructure: PCBM is homogeneously distributed throughout the film at perovskite grain boundaries. The PCBM passivates the key PbI3(-) antisite defects during the perovskite self-assembly, as revealed by theory and experiment. Photoluminescence transient spectroscopy proves that the PCBM phase promotes electron extraction. We showcase this mixed material in planar solar cells that feature low hysteresis and enhanced photovoltage. Using conductive AFM studies, we reveal the memristive properties of perovskite films. We close by positing that PCBM, by tying up both halide-rich antisites and unincorporated halides, reduces electric field-induced anion migration that may give rise to hysteresis and unstable diode behaviour.

9.
Chemphyschem ; 16(6): 1190-202, 2015 Apr 27.
Article in English | MEDLINE | ID: mdl-25418978

ABSTRACT

An electron-deficient small molecule accessible from sustainable isoindigo and phthalimide building blocks was synthesized via optimized synthetic procedures that incorporate microwave-assisted synthesis and a heterogeneous catalyst for Suzuki coupling, and direct heteroarylation carbon-carbon bond forming reactions. The material was designed as a non-fullerene acceptor with the help of DFT calculations and characterized by optical, electronic, and thermal analysis. Further investigation of the material revealed a differing solid-state morphology with the use of three well-known processing conditions: thermal annealing, solvent vapor annealing and small volume fractions of 1,8-diiodooctane (DIO) additive. These unique morphologies persist in the active layer blends and have demonstrated a distinct influence on device performance. Organic photovoltaic-bulk heterojunction (OPV-BHJ) devices show an inherently high open circuit voltage (Voc ) with the best power conversion efficiency (PCE) cells reaching 1.0 V with 0.4 v/v % DIO as a processing additive.

10.
PLoS One ; 9(6): e99202, 2014.
Article in English | MEDLINE | ID: mdl-24897116

ABSTRACT

At high concentration or in the presence of electrolytes and organic solvents, solutions of cellulose nanocrystals (CNCs) can form gels exhibiting optical properties similar to the ones of liquid crystal phases. In an attempt to pattern such a gel phase, we have studied the electrodissolution of a metallic electrode in a water suspension of carboxylated CNCs (cCNCs). Depending on the metal used, the electrodissolution process was observed at a different positive potential. In the case of copper the minimum potential at which we could observe optically the growth of the gel phase was 200 mV. The growth rate was current limited indicating that the process was controlled by the electrodissolution of the copper electrode. This hypothesis was confirmed by using circular and square copper patterns as positive electrodes. In both cases, the consumption of the electrode material was observed optically and correlated with the growth of the gel phase.


Subject(s)
Cellulose/chemistry , Electrochemistry , Electrodes , Gels , Metals/chemistry , Nanoparticles/chemistry
11.
Rev Sci Instrum ; 84(5): 053906, 2013 May.
Article in English | MEDLINE | ID: mdl-23742565

ABSTRACT

A simple and inexpensive automated method for determining the thermal conductivity of a combinatorial library of thin films is demonstrated by measuring the thermal conductivity of a sputtered silicon dioxide film of varying thickness deposited on single crystal silicon. Using 3ω measurements, two methods for calculating the substrate thermal conductivity and two methods for determining the film thermal conductivity are demonstrated and compared. The substrate thermal conductivity was found to be 139 ± 3 W/m·K. Using the measured variation in film thickness, the film thermal conductivity was found to be 1.11 ± 0.05 W/m·K, in excellent agreement with published values for sputtered SiO2, demonstrating the accuracy of the method.

12.
ACS Appl Mater Interfaces ; 4(12): 6735-46, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23143856

ABSTRACT

The first quantitative comparison between self-assembled monolayers of homologous carboxylate- and phosphonate-terminated organic dyes that are of use in dye-sensitized solar cells (DSSCs) is reported. (Cyanovinyl)phosphonate-terminated oligothiophenes and (cyanovinyl)carboxylate-terminated oligothiophenes were synthesized on TiO(2) thin film electrodes. Structurally analogous organics were compared for the effect of the anchoring groups on photochemical properties in solution as measured by UV/vis spectroscopy and for reactivity with the electrode surface. Monolayers were grown on the TiO(2) electrodes either by "tethering by aggregation and growth" (T-BAG) or by solution dipping. Surface roughness and homogeneity, elemental composition, and thickness of the monolayers were evaluated by atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and ellipsometry. Molecular loadings for each monolayer on TiO(2) were quantified by quartz crystal microgravimetry (QCM), and the stability of bonding between each class of dyes and the TiO(2) was evaluated by measuring desorption, also by QCM; the carboxylates underwent significant dissociation in aqueous media but the phosphonates did not. DSSCs were prepared from each congener and from simple oligothiophene phosphonates to determine the effect of the cyanovinyl group on device behavior; all DSSCs were studied under irradiation from a AM 1.5G solar light source; the effect of cyanovinyl group termination was comparable to that of adding a thiophene moiety, and the DSSC using a self-assembled monolayer of (sexithiophene)phosphonate (6TP) had total power conversion efficiency (η) of ca. 5%.

14.
Biomacromolecules ; 10(7): 1986-91, 2009 Jul 13.
Article in English | MEDLINE | ID: mdl-19534550

ABSTRACT

The self-assembly properties of fibrous proteins such as collagen are frequently used to form three-dimensional scaffolds. In this study we investigated the effect of nonuniform alternating and static electric-fields on the self-assembly properties of a dilute solution of vimentin. In the presence of both types of fields at the same time, vimentin was observed to accumulate at the positive electrode and to form microscaffolds bridging the two electrodes in 20-30 min. Atomic force microscopy of the surface of dried microscaffolds revealed the presence of dense 8-12 nm diameter vimentin filament meshworks as well as bundles with typical diameters of 100-200 nm. Stretching of the scaffolds revealed that either the bundles or drawn meshworks could be extended to at least 6-fold and the presence fibers with a width of several µm.


Subject(s)
Electrochemical Techniques , Vimentin/chemistry , Electrodes , Metals , Microscopy, Atomic Force , Nanostructures/chemistry
15.
J Phys Chem A ; 111(49): 12333-8, 2007 Dec 13.
Article in English | MEDLINE | ID: mdl-17997528

ABSTRACT

Organic thin-film transistors using pentacene as the semiconductor were fabricated on silicon. A series of phosphonate-based self-assembled monolayers (SAMs) was used as a buffer between the silicon dioxide gate dielectric and the active pentacene channel region. Octadecylphosphonate, (quarterthiophene)phosphonate, and (9-anthracene)phosphonate SAMs were examined. Significant improvements in the sub-threshold slope and threshold voltage were observed for each SAM treatment as compared to control devices fabricated without the buffer. These improvements were related to structural motif relationships between the pentacene semiconductor and the SAM constituents. Measured transistor properties were consistent with a reduction in density of charge trapping states at the semiconductor-dielectric interface that was effected by introduction of the self-assembled monolayer.

SELECTION OF CITATIONS
SEARCH DETAIL
...