Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Nutr ; 9: 957486, 2022.
Article in English | MEDLINE | ID: mdl-36003838

ABSTRACT

Plant-based beverages (PBB) are often marketed and used by consumers as alternatives to ruminant milks, particularly bovine milk (hereafter referred to as milk). However, much research has established that there is variation in nutritional composition among these products, as well as demonstrating that they are largely not nutritional replacements for milk. A survey of the prices and nutrition labels of PBB available in New Zealand supermarkets was undertaken. Selected almond, coconut, oat, rice, and soy PBB products were then analyzed for nutritional content, including energy, fat, protein, amino acid, bioavailable amino acid, and trace element contents. Finally, the protein and calcium contents of well-mixed and unshaken products were analyzed to ascertain the impact of colloidal stability on nutrient content. All PBB groups were more expensive than milk on average, while their declared nutrient contents on package labels was highly variable within and between groups. Analyses of selected PBB revealed that soy products had the most similar proximate composition to milk, while all other PBB groups contained less than 1.1 g protein per 100 mL on average. Many PBB were fortified with calcium to a similar concentration as that in milk. Shaken and unshaken samples showed divergent protein and calcium content for several PBB products but had no effect on the composition of milk, indicating that the nutrient content of PBB at the point of consumption will be dependent on whether the product has been shaken. Only the soy PBB had comparable amino acid content and bioavailability to milk. Overall, our results demonstrate the diversity in composition and nutritional properties of PBB available in New Zealand. While the existent environmental footprint data on PBB shows that they generally have lower carbon emissions than milk, milk currently accounts for approximately 1% of the average New Zealand resident's consumption-based emissions. Except for calcium-fortified soy PBB, none of the commercially available PBB had nutritional compositions that were broadly comparable to milk.

2.
Front Nutr ; 9: 766796, 2022.
Article in English | MEDLINE | ID: mdl-35187029

ABSTRACT

An increasing global population requires increasing food and nutrient availability. Meat is recognized as a nutrient dense food, particularly notable for its high-quality protein content, B vitamin and mineral content. However, it is not known how important meat is currently in nourishing the global population. The DELTA Model was used to calculate the contribution of meat (defined as animal flesh, excluding fish and seafood) to the global availability of 29 nutrients. This model utilizes global food production and use data, coupled with data for food waste, food nutrient composition and nutrient bioavailability to calculate the total amount of each nutrient available for consumption by the global population. Around 333 million tons of meat were produced globally in 2018, 95% of which was available as food, constituting ~7% of total food mass. Meat's contribution to nutrient availability was disproportionately higher than this: meat provided 11% of global food energy availability, 29% of dietary fat and 21% of protein. For the micronutrients, meat provided high proportions of vitamins: A (24%), B1 and B2 (15% each), B5 (10%), B6 (13%), and B12 (56%). Meat also provided high proportions of several trace elements: zinc (19%), selenium (18%), iron (13%), phosphorous (11%), and copper (10%). Meat is a poor contributor to fiber, magnesium and vitamins C and E. Meat was responsible for 16% (cystine) to 32% (lysine) of global availability of the bioavailable indispensable amino acids included in the model, due partly to the high digestibility of these nutrients from meat (83-100%). Of the total meat mass available as food in 2018, 23% was ruminant meat, 34% poultry meat, 32% pig meat, 2% other meat, and 9% offal and fats. The disproportionate contribution of meat to the global availability of nutrients emphasizes its important place in delivering nutrition to the current global population.

3.
J Nutr ; 151(10): 3253-3261, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34195827

ABSTRACT

BACKGROUND: Increasing attention is being directed at the environmental, social, and economic sustainability of the global food system. However, a key aspect of a sustainable food system should be its ability to deliver nutrition to the global population. Quantifying nutrient adequacy with current tools is challenging. OBJECTIVE: To produce a computational model illustrating the nutrient adequacy of current and proposed global food systems. METHODS: The DELTA Model was constructed using global food commodity balance sheet data, alongside demographic and nutrient requirement data from UN and European Food Safety Authority sources. It also includes nutrient bioavailability considerations for protein, the indispensable amino acids, iron, and zinc, sourced from scientific literature. RESULTS: The DELTA Model calculates global per capita nutrient availability under conditions of equal distribution and identifies areas of nutrient deficiency for various food system scenarios. Modeling the 2018 global food system showed that it supplied insufficient calcium (64% of demographically weighted target intake) and vitamin E (69%), despite supplying sufficient macronutrients. Several future scenarios were modeled, including variations in waste; scaling up current food production for the 2030 global population; plant-based food production systems; and removing sugar crops from the global food system. Each of these scenarios fell short of meeting requirements for multiple nutrients. These results emphasize the need for a balanced approach in the design of future food systems. CONCLUSIONS: Nutrient adequacy must be at the forefront of the sustainable food system debate. The DELTA Model was designed for both experts and nonexperts to inform this debate as to what may be possible, practical, and optimal for our food system. The model results strongly suggest that both plant and animal foods are necessary to achieve global nutrition. The model is freely available for public use so that anyone can explore current and simulated global food systems.


Subject(s)
Nutrients , Nutritional Status , Animals , Diet , Eating , Micronutrients , Nutritional Requirements , Nutritive Value
4.
Front Nutr ; 8: 716100, 2021.
Article in English | MEDLINE | ID: mdl-35096919

ABSTRACT

Nutrient-rich foods play a major role in countering the challenges of nourishing an increasing global population. Milk is a source of high-quality protein and bioavailable amino acids, several vitamins, and minerals such as calcium. We used the DELTA Model, which calculates the delivery of nutrition from global food production scenarios, to examine the role of milk in global nutrition. Of the 29 nutrients considered by the model, milk contributes to the global availability of 28. Milk is the main contributing food item for calcium (49% of global nutrient availability), Vitamin B2 (24%), lysine (18%), and dietary fat (15%), and contributes more than 10% of global nutrient availability for a further five indispensable amino acids, protein, vitamins A, B5, and B12, phosphorous, and potassium. Despite these high contributions to individual nutrients, milk is responsible for only 7% of food energy availability, indicating a valuable contribution to global nutrition without necessitating high concomitant energy intakes. Among the 98 food items considered by the model, milk ranks in the top five contributors to 23 of the 29 nutrients modeled. This quantification of the importance of milk to global nutrition in the current global food system demonstrates the need for the high valuation of this food when considering future changes to the system.

7.
J Agric Food Chem ; 50(25): 7187-93, 2002 Dec 04.
Article in English | MEDLINE | ID: mdl-12452630

ABSTRACT

Dairying into the 21st century will largely continue with the trends seen in the past few decades, although there is always the possibility of an unlikely but disruptive event. The politics of globalization will potentially be important in freeing up global trade in dairy products. Production on the farm will become increasingly efficient, resulting in continuing price benefits to the consumer. At the same time, increasing attention will be paid by the consumer, producer, and manufacturer to safety and quality issues. Environmental concerns will increase in importance, and the issue of methane production may be important for the industry over the next two decades. It is unlikely that genetically modified milk will be introduced soon, even if public acceptance ceases to be an issue; however, the use of genetic markers for accelerated genetic improvement of cows will have rapidly increasing importance. Despite increasing pressure from nonmilk alternatives, milk and dairy will still be the best sources of nutrition for the young and for traditional dairy products. Consumer concerns will be of overriding importance for the industry, and the safety of dairy foods must become absolute. Recent advances in the chemical, physical, and information sciences and technologies will be utilized to gain greater understanding of the increasingly complex food systems and to support the consumer objectives.


Subject(s)
Dairy Products , Dairying/trends , Milk , Agriculture/economics , Animals , Anniversaries and Special Events , Biotechnology , Breeding , Cattle/genetics , Cattle Diseases/economics , Cattle Diseases/prevention & control , Consumer Behavior , Dairying/economics , Female , Periodicals as Topic , Quality Control , Safety
SELECTION OF CITATIONS
SEARCH DETAIL
...