Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 10(6)2020 Jun 06.
Article in English | MEDLINE | ID: mdl-32517263

ABSTRACT

Developing highly-efficient membranes for toxin clearance in small-format hemodialysis presents a fabrication challenge. The miniaturization of fluidics and controls has been the focus of current work on hemodialysis (HD) devices. This approach has not addressed the membrane efficiency needed for toxin clearance in small-format hemodialysis devices. Dr. Willem Kolff built the first dialyzer in 1943 and many changes have been made to HD technology since then. However, conventional HD still uses large instruments with bulky dialysis cartridges made of ~2 m2 of 10 micron thick, tortuous-path membrane material. Portable, wearable, and implantable HD systems may improve clinical outcomes for patients with end-stage renal disease by increasing the frequency of dialysis. The ability of ultrathin silicon-based sheet membranes to clear toxins is tested along with an analytical model predicting long-term multi-pass experiments from single-pass clearance experiments. Advanced fabrication methods are introduced that produce a new type of nanoporous silicon nitride sheet membrane that features the pore sizes needed for middle-weight toxin removal. Benchtop clearance results with sheet membranes (~3 cm2) match a theoretical model and indicate that sheet membranes can reduce (by orders of magnitude) the amount of membrane material required for hemodialysis. This provides the performance needed for small-format hemodialysis.

2.
Adv Healthc Mater ; 9(4): e1900750, 2020 02.
Article in English | MEDLINE | ID: mdl-31943849

ABSTRACT

Conventional hemodialysis (HD) uses floor-standing instruments and bulky dialysis cartridges containing ≈2 m2 of 10 micrometer thick, tortuous-path membranes. Portable and wearable HD systems can improve outcomes for patients with end-stage renal disease by facilitating more frequent, longer dialysis at home, providing more physiological toxin clearance. Developing devices with these benefits requires highly efficient membranes to clear clinically relevant toxins in small formats. Here, the ability of ultrathin (<100 nm) silicon-nitride-based membranes to reduce the membrane area required to clear toxins by orders of magnitude is shown. Advanced fabrication methods are introduced that produce nanoporous silicon nitride membranes (NPN-O) that are two times stronger than the original nanoporous nitride materials (NPN) and feature pore sizes appropriate for middle-weight serum toxin removal. Single-pass benchtop studies with NPN-O (1.4 mm2 ) demonstrate the extraordinary clearance potential of these membranes (105 mL min-1 m-2 ), and their intrinsic hemocompatibility. Results of benchtop studies with nanomembranes, and 4 h dialysis of uremic rats, indicate that NPN-O can reduce the membrane area required for hemodialysis by two orders of magnitude, suggesting the performance and robustness needed to enable small-format hemodialysis, a milestone in the development of small-format hemodialysis systems.


Subject(s)
Kidney Failure, Chronic , Nanopores , Animals , Humans , Membranes, Artificial , Rats , Renal Dialysis , Silicon Compounds
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 5814-5817, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30441657

ABSTRACT

Improving the health outcomes for end-stage renal Disease (ESRD) patients on hemodialysis (HD) requires new technologies for wearable HD such as a highly efficient membrane that can achieve standard toxic clearance rates in small device footprints. Our group has developed nanoporous silicon nitride (NPN) membranes which are 100 to 1000 times thinner than conventional membranes and are orders-ofmagnitude more efficient for dialysis. Counter flow dialysis separation experiments were performed to measure urea clearance while microdialysis experiments were performed in a stirred beaker to measure the separation of cytochrome-c and albumin. Hemodialysis experiments testing for platelet activation as well as protein adhesion were performed. Devices for the counter flow experiments were constructed with polydimethylsiloxane (PDMS) and a NPN membrane chip. The counter flow devices reduced the urea by as much as 20%. The microdialysis experiments showed a diffusion of ~ 60% for the cytochrome-c while clearing ~ 20% of the Albumin. Initial hemocompatibility studies show that the NPN membrane surface is less prone to both protein adhesion and platelet activation when compared to positive control (glass).


Subject(s)
Kidney Failure, Chronic/therapy , Membranes, Artificial , Microfluidics , Renal Dialysis , Filtration , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...