Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ecol ; 22(10): 2760-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23530654

ABSTRACT

Despite rampant colour pattern diversity in South America, Heliconius erato exhibits a 'postman' wing pattern throughout most of Central America. We examined genetic variation across the range of H. erato, including dense sampling in Central America, and discovered a deep genetic break, centred on the mountain range that runs through Costa Rica. This break is characterized by a novel mitochondrial lineage, which is nearly fixed in northern Central America, that branches basal to all previously described mitochondrial diversity in the species. Strong genetic differentiation also appears in Z-linked and autosomal markers, and it is further associated with a distinct, but subtle, shift in wing pattern phenotype. Comparison of clines in wing phenotype, mtDNA and nuclear markers indicate they are all centred on the mountains dividing Costa Rica, but that cline width differs among data sets. Phylogeographical analyses, accounting for this new diversity, rewrite our understanding of mimicry evolution in this system. For instance, these results suggest that H. erato originated west of the Andes, perhaps in Central America, and as many as 1 million years before its co-mimic, H. melpomene. Overall our data indicate that neutral genetic markers and colour pattern loci are congruent and converge on the same hypothesis-H. erato originated in northwest South America or Central America with a 'postman' phenotype and then radiated into the wealth of colour patterns present today.


Subject(s)
Adaptation, Biological/genetics , Animal Distribution/physiology , Butterflies/genetics , Genetic Variation/genetics , Phenotype , Phylogeny , Wings, Animal/anatomy & histology , Amplified Fragment Length Polymorphism Analysis , Animals , Base Sequence , Butterflies/anatomy & histology , Butterflies/physiology , Central America , DNA, Mitochondrial/genetics , Molecular Sequence Data , Phylogeography , Sequence Analysis, DNA
2.
Heredity (Edinb) ; 107(3): 200-4, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21304546

ABSTRACT

The comimetic Heliconius butterfly species pair, H. erato and H. melpomene, appear to use a conserved Mendelian switch locus to generate their matching red wing patterns. Here we investigate whether H. cydno and H. pachinus, species closely related to H. melpomene, use this same switch locus to generate their highly divergent red and brown color pattern elements. Using an F2 intercross between H. cydno and H. pachinus, we first map the genomic positions of two novel red/brown wing pattern elements; the G locus, which controls the presence of red vs brown at the base of the ventral wings, and the Br locus, which controls the presence vs absence of a brown oval pattern on the ventral hind wing. The results reveal that the G locus is tightly linked to markers in the genomic interval that controls red wing pattern elements of H. erato and H. melpomene. Br is on the same linkage group but approximately 26 cM away. Next, we analyze fine-scale patterns of genetic differentiation and linkage disequilibrium throughout the G locus candidate interval in H. cydno, H. pachinus and H. melpomene, and find evidence for elevated differentiation between H. cydno and H. pachinus, but no localized signature of association. Overall, these results indicate that the G locus maps to the same interval as the locus controlling red patterning in H. melpomene and H. erato. This, in turn, suggests that the genes controlling red pattern elements may be homologous across Heliconius, supporting the hypothesis that Heliconius butterflies use a limited suite of conserved genetic switch loci to generate both convergent and divergent wing patterns.


Subject(s)
Butterflies/genetics , Genes, Insect , Genetic Loci , Pigmentation/genetics , Wings, Animal , Animals , Chromosome Mapping , Crosses, Genetic , Evolution, Molecular , Genetic Variation , Linkage Disequilibrium , Molecular Mimicry , Phenotype
3.
Science ; 258(5089): 1760-3, 1992 Dec 11.
Article in English | MEDLINE | ID: mdl-17831657

ABSTRACT

Uranium-lead ages from an ion probe were taken for zircons from the ore-bearing Noril'sk I intrusion that is comagmatic with, and intrusive to, the Siberian Traps. These values match, within an experimental error of +/-4 million years, the dates for zircons extracted from a tuff at the Permian-Triassic (P-Tr) boundary. The results are consistent with the hypothesis that the P-Tr extinction was caused by the Siberian basaltic flood volcanism. It is likely that the eruption of these magmas was accompanied by the injection of large amounts of sulfur dioxide into the upper atmosphere, which may have led to global cooling and to expansion of the polar ice cap. The P-Tr extinction event may have been caused by a combination of acid rain and global cooling as well as rapid and extreme changes in sea level resulting from expansion of the polar ice cap.

4.
Science ; 256(5054): 186-93, 1992 Apr 10.
Article in English | MEDLINE | ID: mdl-17744717

ABSTRACT

Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.

SELECTION OF CITATIONS
SEARCH DETAIL
...