Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Mol Med ; 28(12): e18482, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38899556

ABSTRACT

Hypoxia poses a significant challenge to the effectiveness of radiotherapy in head and neck squamous cell carcinoma (HNSCC) patients, and it is imperative to discover novel approaches to overcome this. In this study, we investigated the underlying mechanisms contributing to x-ray radioresistance in HPV-negative HNSCC cells under mild hypoxic conditions (1% oxygen) and explored the potential for autophagy modulation as a promising therapeutic strategy. Our findings show that HNSCC cells exposed to mild hypoxic conditions exhibit increased radioresistance, which is largely mediated by the hypoxia-inducible factor (HIF) pathway. We demonstrate that siRNA knockdown of HIF-1α and HIF-1ß leads to increased radiosensitivity in HNSCC cells under hypoxia. Hypoxia-induced radioresistance was not attributed to differences in DNA double strand break repair kinetics, as these remain largely unchanged under normoxic and hypoxic conditions. Rather, we identify autophagy as a critical protective mechanism in HNSCC cells following irradiation under mild hypoxia conditions. Targeting key autophagy genes, such as BECLIN1 and BNIP3/3L, using siRNA sensitizes these cells to irradiation. Whilst autophagy's role in hypoxic radioresistance remains controversial, this study highlights the importance of autophagy modulation as a potential therapeutic approach to enhance the effectiveness of radiotherapy in HNSCC.


Subject(s)
Autophagy , Cell Hypoxia , Radiation Tolerance , Squamous Cell Carcinoma of Head and Neck , Humans , Autophagy/radiation effects , Autophagy/genetics , Radiation Tolerance/genetics , Cell Line, Tumor , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Cell Hypoxia/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Beclin-1/metabolism , Beclin-1/genetics , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , DNA Repair/radiation effects , DNA Repair/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , X-Rays , DNA Breaks, Double-Stranded/radiation effects , Tumor Suppressor Proteins
2.
Cell Death Discov ; 10(1): 282, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866739

ABSTRACT

Ionising radiation (IR) is widely used in cancer treatment, including for head and neck squamous cell carcinoma (HNSCC), where it induces significant DNA damage leading ultimately to tumour cell death. Among these lesions, DNA double strand breaks (DSBs) are the most threatening lesion to cell survival. The two main repair mechanisms that detect and repair DSBs are non-homologous end joining (NHEJ) and homologous recombination (HR). Among these pathways, the protein kinases ataxia telangiectasia mutated (ATM), ataxia telangiectasia and Rad3-related (ATR) and the DNA dependent protein kinase catalytic subunit (DNA-Pkcs) play key roles in the sensing of the DSB and subsequent coordination of the downstream repair events. Consequently, targeting these kinases with potent and specific inhibitors is considered an approach to enhance the radiosensitivity of tumour cells. Here, we have investigated the impact of inhibition of ATM, ATR and DNA-Pkcs on the survival and growth of six radioresistant HPV-negative HNSCC cell lines in combination with either X-ray irradiation or proton beam therapy, and confirmed the mechanistic pathway leading to cell radiosensitisation. Using inhibitors targeting ATM (AZD1390), ATR (AZD6738) and DNA-Pkcs (AZD7648), we observed that this led to significantly decreased clonogenic survival of HNSCC cell lines following both X-ray and proton irradiation. Radiosensitisation of HNSCC cells grown as 3D spheroids was also observed, particularly following ATM and DNA-Pkcs inhibition. We confirmed that the inhibitors in combination with X-rays and protons led to DSB persistence, and increased micronuclei formation. Cumulatively, our data suggest that targeting DSB repair, particularly via ATM and DNA-Pkcs inhibition, can exacerbate the impact of ionising radiation in sensitising HNSCC cell models.

3.
Clin Transl Radiat Oncol ; 44: 100695, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37961749

ABSTRACT

Introduction: Neoadjuvant radiotherapy is successfully used in rectal cancer to improve overall survival. However, treatment response is both unpredictable and variable. There is strong evidence to show that the phenomenon of tumour hypoxia is associated with radioresistance, however the mechanism(s) behind this are poorly understood. Consequently, there have only been a small number of studies evaluating methods targeting hypoxia-induced radioresistance. The purpose of this systematic review is to evaluate the potential effectiveness of targeting hypoxia-induced radioresistance in rectal cancer and provide recommendations for future research in this area. Methods: A comprehensive literature search was performed following the PRISMA guidelines. This study was registered on the Prospero database (CRD42023441983). Results: Eight articles met the inclusion criteria. All studies identified were in vitro or in vivo studies, there were no clinical trials. Of the 8 studies identified, 5 assessed the efficacy of drugs which directly or indirectly targeted hypoxia and three that identified potential targets. There was conflicting in vivo evidence for the use of metformin to overcome hypoxia induced radioresistance. Vorinostat, atovaquone, and evofosfamide showed promising preclinical evidence that they can overcome hypoxia-induced radioresistance. Discussion: The importance of investigating hypoxia-induced radioresistance in rectal cancer is crucial. However, to date, only a small number of preclinical studies exist evaluating this phenomenon. This systematic review highlights the importance of further research to fully understand the mechanism behind this radioresistance. There are promising targets identified in this systematic review however, substantially more pre-clinical and clinical research as a priority for future research is needed.

4.
Radiother Oncol ; 189: 109951, 2023 12.
Article in English | MEDLINE | ID: mdl-37838322

ABSTRACT

Radiotherapy is a widely used treatment modality against cancer, and although survival rates are increasing, radioresistant properties of tumours remain a significant barrier for curative treatment. Tumour hypoxia is one of the main contributors to radioresistance and is common in most solid tumours. Hypoxia is responsible for many molecular changes within the cell which helps tumours to survive under such challenging conditions. These hypoxia-induced molecular changes are predominantly coordinated by the hypoxia inducible factor (HIF) and have been linked with the ability to confer resistance to radiation-induced cell death. To overcome this obstacle research has been directed towards autophagy, a cellular process involved in self degradation and recycling of macromolecules, as HIF plays a large role in its coordination under hypoxic conditions. The role that autophagy has following radiotherapy treatment is conflicted with evidence of both cytoprotective and cytotoxic effects. This literature review aims to explore the intricate relationship between radiotherapy, hypoxia, and autophagy in the context of cancer treatment. It provides valuable insights into the potential of targeting autophagy as a therapeutic strategy to improve the response of hypoxic tumours to radiotherapy.


Subject(s)
Neoplasms , Radiation Tolerance , Humans , Neoplasms/radiotherapy , Hypoxia , Cell Hypoxia , Autophagy , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit
5.
Cancers (Basel) ; 14(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077667

ABSTRACT

Hypoxia is very common in most solid tumours and is a driving force for malignant progression as well as radiotherapy and chemotherapy resistance. Incidences of head and neck squamous cell carcinoma (HNSCC) have increased in the last decade and radiotherapy is a major therapeutic technique utilised in the treatment of the tumours. However, effectiveness of radiotherapy is hindered by resistance mechanisms and most notably by hypoxia, leading to poor patient prognosis of HNSCC patients. The phenomenon of hypoxia-induced radioresistance was identified nearly half a century ago, yet despite this, little progress has been made in overcoming the physical lack of oxygen. Therefore, a more detailed understanding of the molecular mechanisms of hypoxia and the underpinning radiobiological response of tumours to this phenotype is much needed. In this review, we will provide an up-to-date overview of how hypoxia alters molecular and cellular processes contributing to radioresistance, particularly in the context of HNSCC, and what strategies have and could be explored to overcome hypoxia-induced radioresistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...