Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 252
Filter
1.
Int J Toxicol ; : 10915818241260282, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39049435

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of three methylxanthines, Caffeine, Theobromine, and Theophylline, as used in cosmetics. All of these ingredients are reported to function as skin-conditioning agents in cosmetic products. The Panel reviewed the data relevant to the safety of these ingredients and concluded that Caffeine, Theobromine, and Theophylline are safe in cosmetics in the present practices of use and concentration described in this safety assessment.

2.
Int J Toxicol ; : 10915818241259699, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046084

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 10 polyol phosphates. Some of the possible functions in cosmetics that are reported for this ingredient group are chelating agents, oral care agents, and skin conditioning agents. The Panel reviewed relevant data relating to the safety of these ingredients under the intended conditions of use in cosmetic formulations, and concluded that Sodium Phytate, Phytic Acid, Phytin, and Trisodium Inositol Triphosphate are safe in cosmetics in the present practices of use and concentration described in the safety assessment. The Panel also concluded that the data are insufficient to determine the safety of the following 6 ingredients as used in cosmetics: Disodium Glucose Phosphate, Manganese Fructose Diphosphate, Sodium Mannose Phosphate, Trisodium Fructose Diphosphate, Xylityl Phosphate, and Zinc Fructose Diphosphate.

3.
Int J Toxicol ; : 10915818241259694, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039928

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 10 alkanoyl lactyl lactate salts. These ingredients have the surfactant function in cosmetics in common. The Panel reviewed data relevant to the safety of these ingredients, and concluded that these 10 ingredients are safe in cosmetics in the present practices of use and concentration described in the safety assessment when formulated to be nonirritating and nonsensitizing, which may be based on a quantitative risk assessment (QRA) or other accepted methodologies.

4.
Int J Toxicol ; : 10915818241267203, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045851

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) reviewed the safety of 30 vinylpyrrolidone polymers as used in cosmetic products; most of these ingredients have the reported cosmetic function of film former in common. The Panel reviewed data relevant to the safety of these ingredients, and determined that 27 vinylpyrrolidone polymers are safe in cosmetics in the present practices of use and concentration described in the safety assessment. The Panel also concluded that the available data are insufficient to make a determination that 3 vinylpyrrolidone polymers (all urethanes) are safe under the intended conditions of use in cosmetic formulations.

5.
Int J Toxicol ; : 10915818241259692, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38872392

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Triphenyl Phosphate, which is reported to function as a plasticizer in manicuring products. The Panel reviewed the available data to determine the safety of this ingredient. The Panel concluded that Triphenyl Phosphate is safe in cosmetics in the present practices of use and concentration described in this safety assessment.

6.
Res Sq ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38883782

ABSTRACT

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

7.
bioRxiv ; 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38712286

ABSTRACT

Synovial Sarcoma (SS) is driven by the SS18::SSX fusion oncoprotein. and is ultimately refractory to therapeutic approaches. SS18::SSX alters ATP-dependent chromatin remodeling BAF (mammalian SWI/SNF) complexes, leading to the degradation of canonical (cBAF) complex and amplified presence of an SS18::SSX-containing non-canonical BAF (ncBAF or GBAF) that drives an SS-specific transcription program and tumorigenesis. We demonstrate that SS18::SSX activates the SUMOylation program and SSs are sensitive to the small molecule SAE1/2 inhibitor, TAK-981. Mechanistically, TAK-981 de-SUMOylates the cBAF subunit SMARCE1, stabilizing and restoring cBAF on chromatin, shifting away from SS18::SSX-ncBAF-driven transcription, associated with DNA damage and cell death and resulting in tumor inhibition across both human and mouse SS tumor models. TAK-981 synergized with cytotoxic chemotherapy through increased DNA damage, leading to tumor regression. Targeting the SUMOylation pathway in SS restores cBAF complexes and blocks the SS18::SSX-ncBAF transcriptome, identifying a therapeutic vulnerability in SS, positioning the in-clinic TAK-981 to treat SS.

8.
mBio ; 15(6): e0067624, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38722185

ABSTRACT

An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK + HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting-dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting-dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild-type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. E2-TopBP1 interaction promotes mitotic acetylation of CHK2, promoting phosphorylation and activation of the DNA damage response (DDR). The results present a new model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis, and activates the DDR. This is a novel mechanism of HPV16 activation of the DDR, a requirement for the viral life cycle. IMPORTANCE: Human papillomaviruses (HPVs) are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here, we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. We also demonstrate that the E2-TopBP1 interaction activates the DDR. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.


Subject(s)
Carrier Proteins , DNA Damage , DNA-Binding Proteins , Human papillomavirus 16 , Mitosis , Oncogene Proteins, Viral , Sirtuin 1 , Humans , Acetylation , Sirtuin 1/metabolism , Sirtuin 1/genetics , Oncogene Proteins, Viral/metabolism , Oncogene Proteins, Viral/genetics , Human papillomavirus 16/genetics , Human papillomavirus 16/metabolism , Human papillomavirus 16/physiology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Host-Pathogen Interactions , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , E1A-Associated p300 Protein/metabolism , E1A-Associated p300 Protein/genetics , Cell Line
9.
Int J Toxicol ; 43(3_suppl): 5S-63S, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38469819

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Hydrogen Peroxide for use in cosmetics. This ingredient is reported to function in cosmetics as an antimicrobial agent, cosmetic biocide, oral health care agent, and oxidizing agent. The Panel reviewed the data relevant to the safety of this ingredient and concluded that Hydrogen Peroxide is safe in cosmetics in the present practices of use and concentration described in this safety assessment.


Subject(s)
Consumer Product Safety , Cosmetics , Hydrogen Peroxide , Hydrogen Peroxide/toxicity , Cosmetics/toxicity , Cosmetics/chemistry , Humans , Animals , Risk Assessment , Toxicity Tests , Oxidants/toxicity
10.
Int J Toxicol ; 43(3_suppl): 128S-134S, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38465394

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Hydroxyethyl Urea, which is reported to function as a humectant and a hair and skin conditioning agent. The Panel reviewed the available data to determine the safety of this ingredient. The Panel concluded that Hydroxyethyl Urea is safe in cosmetics in the present practices of use and concentration described in the safety assessment when formulated to be non-irritating.


Subject(s)
Consumer Product Safety , Cosmetics , Urea , Animals , Humans , Cosmetics/toxicity , Cosmetics/chemistry , Cosmetics/pharmacokinetics , Risk Assessment , Toxicity Tests , Urea/analogs & derivatives , Urea/toxicity
11.
Int J Toxicol ; 43(3_suppl): 109S-119S, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38471901

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Basic Red 76, which is reported to function in cosmetics as a hair colorant and hair-conditioning agent. The Panel reviewed the available data to determine the safety of this ingredient. The Panel concluded that Basic Red 76 is safe for use as a hair dye ingredient in the present practices of use and concentration described in the safety assessment.


Subject(s)
Consumer Product Safety , Cosmetics , Hair Dyes , Animals , Humans , Rats , Cosmetics/toxicity , Cosmetics/chemistry , Hair Dyes/toxicity , Hair Dyes/chemistry , Hair Dyes/pharmacokinetics , Risk Assessment , Toxicity Tests
12.
Int J Toxicol ; 43(2_suppl): 70S-131S, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38174390

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 10 alkane diol ingredients as used in cosmetics. The alkane diols are structurally related to each other as small diols, and most are reported to function in cosmetics as solvents. The Panel reviewed the relevant data for these ingredients, and concluded that seven alkane diols are safe in cosmetics in the present practices of use and concentration described in this safety assessment, but that the available data are insufficient to make a determination of safety for three ingredients, namely 1,4-Butanediol, 2,3-Butanediol, and Octanediol.


Subject(s)
Consumer Product Safety , Cosmetics , Cosmetics/toxicity , Alcohols , Solvents , Risk Assessment
13.
Chem Biol Drug Des ; 103(1): e14418, 2024 01.
Article in English | MEDLINE | ID: mdl-38230791

ABSTRACT

Melanoma and nonmelanoma skin cancers are among the most prevalent and most lethal forms of skin cancers. To identify new lead compounds with potential anticancer properties for further optimization, in vitro assays combined with in-silico target fishing and docking have been used to identify and further map out the antiproliferative and potential mode of action of molecules from a small library of compounds previously prepared in our laboratory. From screening these compounds in vitro against A375, SK-MEL-28, A431, and SCC-12 skin cancer cell lines, 35 displayed antiproliferative activities at the micromolar level, with the majority being primarily potent against the A431 and SCC-12 squamous carcinoma cell lines. The most active compounds 11 (A431: IC50 = 5.0 µM, SCC-12: IC50 = 2.9 µM, SKMEL-28: IC50 = 4.9 µM, A375: IC50 = 6.7 µM) and 13 (A431: IC50 = 5.0 µM, SCC-12: IC50 = 3.3 µM, SKMEL-28: IC50 = 13.8 µM, A375: IC50 = 17.1 µM), significantly and dose-dependently induced apoptosis of SCC-12 and SK-MEL-28 cells, as evidenced by the suppression of Bcl-2 and upregulation of Bax, cleaved caspase-3, caspase-9, and PARP protein expression levels. Both agents significantly reduced scratch wound healing, colony formation, and expression levels of deregulated cancer molecular targets including RSK/Akt/ERK1/2 and S6K1. In silico target prediction and docking studies using the SwissTargetPrediction web-based tool suggested that CDK8, CLK4, nuclear receptor ROR, tyrosine protein-kinase Fyn/LCK, ROCK1/2, and PARP, all of which are dysregulated in skin cancers, might be prospective targets for the two most active compounds. Further validation of these targets by western blot analyses, revealed that ROCK/Fyn and its associated Hedgehog (Hh) pathways were downregulated or modulated by the two lead compounds. In aggregate, these results provide a strong framework for further validation of the observed activities and the development of a more comprehensive structure-activity relationship through the preparation and biological evaluation of analogs.


Subject(s)
Antineoplastic Agents , Melanoma , Skin Neoplasms , Humans , Melanoma/drug therapy , Melanoma/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Hedgehog Proteins/metabolism , Skin Neoplasms/drug therapy , Apoptosis , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Drug Screening Assays, Antitumor , Cell Proliferation , Cell Line, Tumor , Molecular Structure , rho-Associated Kinases/metabolism
14.
Int J Toxicol ; 43(2_suppl): 5S-69S, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38279815

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 27 inorganic and organometallic zinc salts as used in cosmetic formulations; these salts are specifically of the 2+ (II) oxidation state cation of zinc. These ingredients included in this report have various reported functions in cosmetics, including hair conditioning agents, skin conditioning agents, cosmetic astringents, cosmetic biocides, preservatives, oral care agents, buffering agents, bulking agents, chelating agents, and viscosity increasing agents. The Panel reviewed the relevant data for these ingredients, and concluded that these 27 ingredients are safe in cosmetics in the present practices of use and concentration described in this safety assessment when formulated to be non-irritating.


Subject(s)
Cosmetics , Dermatologic Agents , Salts , Consumer Product Safety , Cosmetics/toxicity , Chelating Agents/toxicity , Risk Assessment
15.
bioRxiv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38293041

ABSTRACT

An interaction between human papillomavirus 16 (HPV16) E2 and the cellular proteins TopBP1 and BRD4 is required for E2 plasmid segregation function. The E2-TopBP1 interaction promotes increased mitotic E2 protein levels in U2OS and N/Tert-1 cells, as well as in human foreskin keratinocytes immortalized by HPV16 (HFK+HPV16). SIRT1 deacetylation reduces E2 protein stability and here we demonstrate that increased E2 acetylation occurs during mitosis in a TopBP1 interacting dependent manner, promoting E2 mitotic stabilization. p300 mediates E2 acetylation and acetylation is increased due to E2 switching off SIRT1 function during mitosis in a TopBP1 interacting dependent manner, confirmed by increased p53 stability and acetylation on lysine 382, a known target for SIRT1 deacetylation. SIRT1 can complex with E2 in growing cells but is unable to do so during mitosis due to the E2-TopBP1 interaction; SIRT1 is also unable to complex with p53 in mitotic E2 wild type cells but can complex with p53 outside of mitosis. E2 lysines 111 and 112 are highly conserved residues across all E2 proteins and we demonstrate that K111 hyper-acetylation occurs during mitosis, promoting E2 interaction with Topoisomerase 1 (Top1). We also demonstrate that K112 ubiquitination promotes E2 proteasomal degradation during mitosis. The results present a model in which the E2-TopBP1 complex inactivates SIRT1 during mitosis and E2 acetylation on K111 by p300 increases, promoting interaction with Top1 that protects K112 from ubiquitination and therefore E2 proteasomal degradation. Importance: Human papillomaviruses are causative agents in around 5% of all human cancers. While there are prophylactic vaccines that will significantly alleviate HPV disease burden on future generations, there are currently no anti-viral strategies available for the treatment of HPV cancers. To generate such reagents, we must understand more about the HPV life cycle, and in particular about viral-host interactions. Here we describe a novel mitotic complex generated by the HPV16 E2 protein interacting with the host protein TopBP1 that controls the function of the deacetylase SIRT1. The E2-TopBP1 interaction disrupts SIRT1 function during mitosis in order to enhance acetylation and stability of viral and host proteins. This novel complex is essential for the HPV16 life cycle and represents a novel anti-viral therapeutic target.

16.
Int J Toxicol ; 43(1_suppl): 82S-95S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38166445

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 13 Butyrospermum parkii (shea)-derived ingredients, which are most frequently reported to function in cosmetics as skin and hair conditioning agents. The Panel reviewed the available data to determine the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing similar constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. Industry should use good manufacturing practices to limit impurities that could be present in botanical ingredients. The Panel concluded that these ingredients are safe in the present practices of use and concentration when formulated to be non-sensitizing.


Subject(s)
Cosmetics , Cosmetics/toxicity , Consumer Product Safety
17.
Int J Toxicol ; 43(1_suppl): 64S-81S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37930133

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 10 Ginkgo biloba-derived ingredients, which are most frequently reported to function in cosmetics as skin conditioning agents or antioxidants. The Panel reviewed the available data to determine the safety of these ingredients. Because final product formulations may contain multiple botanicals, each containing the same constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. The Panel was concerned about the presence of ginkgolic acid in cosmetics. Industry should use good manufacturing practices to limit impurities. The Panel concluded that 5 Ginkgo biloba leaf-derived ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be non-sensitizing; data are insufficient to determine the safety of the remaining 5 ingredients under the intended conditions of use in cosmetic formulations.


Subject(s)
Cosmetics , Ginkgo biloba , Ginkgo biloba/toxicity , Consumer Product Safety , Plant Extracts/toxicity , Cosmetics/toxicity , Antioxidants
18.
Int J Toxicol ; 43(1_suppl): 5S-29S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38126727

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Humulus Lupulus (Hops) Extract (reported functions include antimicrobial agent and hair conditioning agent) and Humulus Lupulus (Hops) Oil (reported function is fragrance). The Panel reviewed the relevant data related to these ingredients. Because final product formulations may contain multiple botanicals, each containing the same constituents of concern, formulators are advised to be aware of these constituents and to avoid reaching levels that may be hazardous to consumers. For these ingredients, the Panel was concerned about the presence of 8-prenylnaringenin, ß-myrcene, and quercetin in cosmetics, which could result in estrogenic effects, dermal irritation, and genotoxicity, respectively. Industry should use current good manufacturing practices to limit impurities and constituents of concern. The Panel concluded that Humulus Lupulus (Hops) Extract and Humulus Lupulus (Hops) Oil are safe in cosmetics in the present practices of use and concentration when formulated to be non-sensitizing.


Subject(s)
Biological Products , Cosmetics , Humulus , Consumer Product Safety , Plant Extracts/toxicity , Cosmetics/toxicity
19.
Int J Toxicol ; 43(1_suppl): 30S-49S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38127844

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of 13 alkyl sultaines, which are most frequently reported to function in cosmetics as antistatic agents, surfactants, and skin and hair conditioning agents. The Panel reviewed the available data to determine the safety of these ingredients. The Panel noted gaps in the available safety data for some of the alkyl sultaines in this safety assessment; the available data on some of the ingredients are sufficient, however, and can be read across to support the safety of other members of the group. The Panel concluded that these alkyl sultaines are safe in cosmetics in the present practices of use and concentration described in this safety assessment.


Subject(s)
Consumer Product Safety , Cosmetics , Cosmetics/toxicity , Skin , Surface-Active Agents , Risk Assessment
20.
Int J Toxicol ; 43(1_suppl): 50S-63S, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38146080

ABSTRACT

The Expert Panel for Cosmetic Ingredient Safety (Panel) assessed the safety of Adenosine, Adenosine Phosphate, Adenosine Triphosphate, Disodium Adenosine Phosphate, and Disodium Adenosine Triphosphate. These ingredients are reported to function in cosmetics as skin-conditioning agents - miscellaneous. The Panel considered the available data and concluded that the five adenosine ingredients reviewed in this report are safe in cosmetics in the present practices of use and concentration described in this safety assessment.


Subject(s)
Adenosine , Cosmetics , Adenosine/toxicity , Consumer Product Safety , Cosmetics/toxicity , Adenosine Triphosphate , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...